scholarly journals A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors

Soft Matter ◽  
2016 ◽  
Vol 12 (11) ◽  
pp. 2842-2845 ◽  
Author(s):  
Suman Samai ◽  
Christos Sapsanis ◽  
Sachin P. Patil ◽  
Alaa Ezzeddine ◽  
Basem A. Moosa ◽  
...  

The supramolecular self-assembly of a two-component hydrogel afforded a stimuli responsive hydrogel at room temperature.

2017 ◽  
Vol 196 ◽  
pp. 305-316 ◽  
Author(s):  
Pengfei Duan ◽  
Deepak Asthana ◽  
Takuya Nakashima ◽  
Tsuyoshi Kawai ◽  
Nobuhiro Yanai ◽  
...  

Aggregation-induced photon upconversion (iPUC) based on a triplet–triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor–acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor–acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


2021 ◽  
Author(s):  
Jian Qu ◽  
Xin Zhang ◽  
Zhong-Jie Wang ◽  
Shuyan Zhang ◽  
Yejian Yu ◽  
...  

Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive...


2018 ◽  
Vol 99 ◽  
pp. 378-383 ◽  
Author(s):  
Muhammad Nisar ◽  
Pascal S. Thue ◽  
Cesar A. Heck ◽  
J.L. Salazar Cuaila ◽  
J. Geshev ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


2021 ◽  
Vol 9 (14) ◽  
pp. 3200-3209
Author(s):  
Wei Ha ◽  
Xiao-Bo Zhao ◽  
Wei-Hua Zhao ◽  
Jiang-Jiang Tang ◽  
Yan-Ping Shi

An ingeniously designed podophyllotoxin nanoprodrug was synthesized and offered an effective platform for co-delivery of multiple therapeutic agents for drug combination via the hierarchical self-assembly strategy.


Sign in / Sign up

Export Citation Format

Share Document