Synthesis of polyethylene/nickel–carbon stimuli-responsive material under magnetic field at room temperature: Effect of the filler on the properties

2018 ◽  
Vol 99 ◽  
pp. 378-383 ◽  
Author(s):  
Muhammad Nisar ◽  
Pascal S. Thue ◽  
Cesar A. Heck ◽  
J.L. Salazar Cuaila ◽  
J. Geshev ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuying Yang ◽  
Zhiyan Chen ◽  
Xiangqian Lu ◽  
Xiaotao Hao ◽  
Wei Qin

AbstractThe organic magnetoelectric complexes are beneficial for the development on flexible magnetoelectric devices in the future. In this work, we fabricated all organic multiferroic ferromagnetic/ferroelectric complexes to study magnetoelectric coupling at room temperature. Under the stimulus of external magnetic field, the localization of charge inside organic ferromagnets will be enhanced to affect spin–dipole interaction at organic multiferroic interfaces, where overall ferroelectric polarization is tuned to present an organic magnetoelectric coupling. Moreover, the magnetoelectric coupling of the organic ferromagnetic/ferroelectric complex is tightly dependent on incident light intensity. Decreasing light intensity, the dominated interfacial interaction will switch from spin–dipole to dipole–dipole interaction, which leads to the magnetoelectric coefficient changing from positive to negative in organic multiferroic magnetoelectric complexes.


2021 ◽  
Vol 26 (2) ◽  
pp. 47
Author(s):  
Julien Eustache ◽  
Antony Plait ◽  
Frédéric Dubas ◽  
Raynal Glises

Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this effect was widely used for cryogenic applications to achieve very low temperatures. However, this technology must be improved to replace vapor-compression devices operating around room temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced modeling solutions to study magnetocaloric regenerator is described.


2021 ◽  
Vol 12 (1) ◽  
pp. 270-281
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Marina Krumova ◽  
Sebastian Polarz ◽  
...  

The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40206-40214
Author(s):  
Wararat Montha ◽  
Weerakanya Maneeprakorn ◽  
I-Ming Tang ◽  
Weeraphat Pon-On

Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine.


2007 ◽  
Vol 111 (16) ◽  
pp. 5893-5897 ◽  
Author(s):  
Dewei Chu ◽  
Yu-Ping Zeng ◽  
Dongliang Jiang

2012 ◽  
Vol 194 ◽  
pp. 187-193 ◽  
Author(s):  
J.M. Loureiro ◽  
Benilde F.O. Costa ◽  
Gerard Le Caër ◽  
Bernard Malaman

Ternary alloys, (Fe50−x/2Co50−x/2)Snx(x ≤ 33 at.%), are prepared by mechanical alloying from powder mixtures of the three elements. As-milled alloys are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. The solubility of Sn in near-equiatomic bcc FeCo is increased from ~0.5 at. % at equilibrium to ~20 at.% in the used milling conditions. The average 119Sn hyperfine magnetic field at room temperature is larger, for any x, than the corresponding fields in mechanically alloyed Fe-Sn solid solutions.


2015 ◽  
Vol 54 (4) ◽  
pp. 1535-1542 ◽  
Author(s):  
Kundan K. Singh ◽  
Mrityunjay k. Tiwari ◽  
Munmun Ghosh ◽  
Chakadola Panda ◽  
Andrew Weitz ◽  
...  

2018 ◽  
Vol 115 (51) ◽  
pp. 12950-12955 ◽  
Author(s):  
Yuxing Yao ◽  
James T. Waters ◽  
Anna V. Shneidman ◽  
Jiaxi Cui ◽  
Xiaoguang Wang ◽  
...  

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic–isotropic transition temperature (TN–I) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction. By further introducing light-responsive moieties, we demonstrate unique multifunctionality of the LCEs capable of three actuation modes: self-regulated bending toward the light source at T < TN–I, magnetic-field–encoded predetermined deformation at T > TN–I, and direction-dependent self-regulated motion toward the light at T > TN–I. We develop approaches to create patterned arrays of microstructures with encoded multiple area-specific deformation modes and show their functions in responsive release of cargo, image concealment, and light-controlled reflectivity. We foresee that this platform can be widely applied in switchable adhesion, information encryption, autonomous antennae, energy harvesting, soft robotics, and smart buildings.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


Sign in / Sign up

Export Citation Format

Share Document