N-Substituted poly(3,6-dithienylcarbazole) derivatives: a new class of redox-active electrode materials for high-performance flexible solid-state pseudocapacitors

2017 ◽  
Vol 5 (2) ◽  
pp. 609-618 ◽  
Author(s):  
Deniz Yiğit ◽  
Mustafa Güllü

This study presents the design, synthesis and charge storage features of novel poly(3,6-dithienylcarbazole) derivatives as redox-active materials for high performance energy storage applications.

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 788
Author(s):  
Xin Guan ◽  
Lujun Pan ◽  
Zeng Fan

Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics.


RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41419-41428 ◽  
Author(s):  
Deniz Yiğit ◽  
Furkan Soysal ◽  
Tuğba Güngör ◽  
Burhanettin Çiçek ◽  
Mustafa Güllü

A novel CNF/PTDTD composite electrode was firstly prepared. The corresponding solid-state supercapacitor delivered a specific capacitance of 332 F g−1, reaching an energy density of 166 W h kg−1 with 89% capacitance retention.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Author(s):  
Kathryn Holguin ◽  
Motahareh Mohammadiroudbari ◽  
Kaiqiang Qin ◽  
Chao Luo

Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials...


2021 ◽  
Vol 3 ◽  
Author(s):  
Subash Pandey ◽  
Shova Neupane ◽  
Dipak Kumar Gupta ◽  
Anju Kumari Das ◽  
Nabin Karki ◽  
...  

In this study, we report on a combined approach to preparing an active electrode material for supercapattery application by making nanocomposites of Polyaniline/Cerium (PANI/Ce) with different weight percentages of magnetite (Fe3O4). Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses supported the interaction of PANI with Ce and the formation of the successful nanocomposite with magnetite nanoparticles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed the uniform and porous morphology of the composites. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) were used to test the supercapattery behavior of the nanocomposite electrodes in 1.0 M H2SO4. It was found that the supercapattery electrode of PANI/Ce+7 wt.% Fe3O4 exhibited a specific capacity of 171 mAhg−1 in the potential range of −0.2 to 1.0 V at the current density of 2.5 Ag−1. Moreover, PANI/Ce+7 wt.% Fe3O4 revealed a power density of 376.6 Wkg−1 along with a maximum energy density of 25.4 Whkg−1 at 2.5 Ag−1. Further, the cyclic stability of PANI/Ce+7 wt.% Fe3O4 was found to be 96.0% after 5,000 cycles. The obtained results suggested that the PANI/Ce+Fe3O4 nanocomposite could be a promising electrode material candidate for high-performance supercapattery applications.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Pragati A. Shinde ◽  
Vaibhav C. Lokhande ◽  
Amar M. Patil ◽  
Taeksoo Ji ◽  
Chandrakant D. Lokhande

AbstractTo enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO


Sign in / Sign up

Export Citation Format

Share Document