Recent developments in sensing methods for eutrophying nutrients with a focus on automation for environmental applications

The Analyst ◽  
2017 ◽  
Vol 142 (23) ◽  
pp. 4355-4372 ◽  
Author(s):  
G. Duffy ◽  
F. Regan

A comprehensive review focusing on eutrophying nutrient monitoring using autonomous sensors, including novel analysis methods, standard analysis methods and state-of-the-art sensor technology.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 510 ◽  
Author(s):  
Maryam Shetab Boushehri ◽  
Dirk Dietrich ◽  
Alf Lamprecht

Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.


2021 ◽  
pp. 1-15
Author(s):  
Jie Hong ◽  
Xiansheng Qin

Over past two decades, steady-state evoked potentials (SSVEP)-based brain computer interface (BCI) systems have been extensively developed. As we all know, signal processing algorithms play an important role in this BCI. However, there is no comprehensive review of the latest development of signal processing algorithms for SSVEP-based BCI. By analyzing the papers published in authoritative journals in nearly five years, signal processing algorithms of preprocessing, feature extraction and classification modules are discussed in detail. In addition, other aspects existed in this BCI are mentioned. The following key problems are solved. (1) In recent years, which signal processing algorithms are frequently used in each module? (2) Which signal processing algorithms attract more attention in recent years? (3) Which modules are the key to signal processing in BCI field? This information is very important for choosing the appropriate algorithms, and can also be considered as a reference for further research. Simultaneously, we hope that this work can provide relevant BCI researchers with valuable information about the latest trends of signal processing algorithms for SSVEP-based BCI systems.


Chemosphere ◽  
2021 ◽  
pp. 131607
Author(s):  
Jagadeesan Aravind Kumar ◽  
Pandurangan Prakash ◽  
Thangavelu Krithiga ◽  
Duvuru Joshua Amarnath ◽  
Jayapal Prem Kumar ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 864 ◽  
Author(s):  
Ju Wang ◽  
Nicolai Spicher ◽  
Joana M. Warnecke ◽  
Mostafa Haghi ◽  
Jonas Schwartze ◽  
...  

With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking.


Author(s):  
Frederick Tajirian ◽  
Mansour Tabatabaie ◽  
Basilio Sumodobila ◽  
Stephen Paulson ◽  
Bill Davies

The design of steel jacket fixed offshore structures in zones of moderate seismicity is typically governed by Metocean loads. In contrast the steel gravity structure (SGS) presented in this paper, is a heavy and stiff structure. The large mass results in foundation forces from seismic events that may exceed those created by extreme cyclonic storm events. When computing the earthquake response of such structures it is essential to account for soil-structure interaction (SSI) effects. Seismic SSI analysis of the SGS platform was performed using state-of-the-art SSI software, which analyzed a detailed three-dimensional model of the SGS supported on layered soil system. The results of this analysis were then compared with those using industry standard impedance methods whereby the layered soil is replaced by equivalent foundation springs (K) and damping (C). Differences in calculated results resulting from the different ways by which K and C are implemented in different software are presented. The base shear, overturning moment, critical member forces and maximum accelerations were compared for each of the analysis methods. SSI resulted in significant reduction in seismic demands. While it was possible to get reasonable alignment using the different standard industry analysis methods, this was only possible after calibrating the KC foundation model with software that rigorously implements SSI effects. Lessons learned and recommendations for the various methods of analysis are summarized in the paper.


1984 ◽  
Vol 79 ◽  
pp. 607-616
Author(s):  
R. R. Shannon

The requirements on gratings and coatings for astronomical use differ from the general industrial requirements primarily in the scale of the components to be fabricated. Telescopes have large primary mirrors which require large coating plants to handle the components. Dispersive elements are driven by the requirement to be efficient in the presence of large working apertures, and usually optimize to large size in order to efficiently use the incoming radiation. Beyond this, there is a “new” technology of direct electronic sensors that places specific limits upon the image scale that can be used at the output of a telescope system, whether direct imagery or spectrally divided imagery is to be examined. This paper will examine the state of the art in these areas and suggest some actions and decisions that will be required in order to apply current technology to the predicted range of large new telescopes.


2016 ◽  
Vol 57 (59) ◽  
pp. 28610-28645 ◽  
Author(s):  
Murat Eyvaz ◽  
Taha Aslan ◽  
Serkan Arslan ◽  
Ebubekir Yüksel ◽  
İsmail Koyuncu

2000 ◽  
Vol 53 (6) ◽  
pp. 147-174 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.


Sign in / Sign up

Export Citation Format

Share Document