Conjugated D–A porphyrin dimers for solution-processed bulk-heterojunction organic solar cells

2017 ◽  
Vol 53 (37) ◽  
pp. 5113-5116 ◽  
Author(s):  
Tianqi Lai ◽  
Xuebin Chen ◽  
Liangang Xiao ◽  
Lin Zhang ◽  
Tianxiang Liang ◽  
...  

Three porphyrin dimers with different linkages are synthesized as donors for organic photovoltaics with an optimized PCE of 6.42%.

2015 ◽  
Vol 51 (77) ◽  
pp. 14439-14442 ◽  
Author(s):  
Song Chen ◽  
Liangang Xiao ◽  
Xunjin Zhu ◽  
Xiaobing Peng ◽  
Wai-Kwok Wong ◽  
...  

A series of new A–D–A structural 5,15-dialkylated porphyrin-cored small molecules have been developed as donors in bulk heterojunction organic solar cells, and the highest power conversion efficiency of 6.49% has been achieved.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60626-60632 ◽  
Author(s):  
Fang-Chi Hsu ◽  
Ming-Kuang Hsieh ◽  
Chiranjeevulu Kashi ◽  
Chen-Yu Yeh ◽  
Tai-Yuan Lin ◽  
...  

We synthesize a novel class of porphyrin dimers consisting of two zinc-metalated porphyrin units covalently linked through ethynyl or butadiyne group as electron donors for the fabrication of organic bulk heterojunction (BHJ) solar cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 6286-6293 ◽  
Author(s):  
M. Nazim ◽  
Sadia Ameen ◽  
M. Shaheer Akhtar ◽  
Hyung-Kee Seo ◽  
Hyung-Shik Shin

Novel furan-bridged thiazolo[5,4-d]thiazole based π-conjugated organic chromophore (RFTzR) was formulated and utilized for the fabrication of solution-processed small molecule organic solar cells (SMOSCs).


2020 ◽  
Vol 10 (17) ◽  
pp. 5743
Author(s):  
Shabaz Alam ◽  
M. Shaheer Akhtar ◽  
Abdullah ◽  
Eun-Bi Kim ◽  
Hyung-Shik Shin ◽  
...  

A new and effective planar D-π-A configured small organic molecule (SOM) of 2-5-(3,5-dimethoxystyryl)thiophen-2-yl)methylene)-1H-indene-1,3(2H)-dione, abbreviated as DVB-T-ID, was synthesized using 1,3-indanedione acceptor and dimethoxy vinylbenzene donor units, connected through a thiophene π-spacer. The presence of a dimethoxy vinylbenzene unit and π-spacer in DVB-T-ID significantly improved the absorption behavior by displaying maximum absorbance at ~515 nm, and the reasonable band gap was estimated as ~2.06 eV. The electronic properties revealed that DVB-T-ID SOMs exhibited promising HOMO (−5.32 eV) and LUMO (−3.26 eV). The synthesized DVB-T-ID SOM was utilized as donor material for fabricating solution-processed bulk heterojunction organic solar cells (BHJ-OSCs) and showed a reasonable power conversion efficiency (PCE) of ~3.1% with DVB-T-ID:PC61BM (1:2, w/w) active layer. The outcome of this work clearly reflects that synthesized DVB-T-ID based on 1,3-indanedione units is a promising absorber (donor) material for BHJ-OSCs.


2020 ◽  
Vol 44 (14) ◽  
pp. 12100-12111
Author(s):  
Abdullah ◽  
Eun‐Bi Kim ◽  
M. Shaheer Akhtar ◽  
Hyung‐Shik Shin ◽  
Sadia Ameen

2015 ◽  
Vol 3 (24) ◽  
pp. 6209-6217 ◽  
Author(s):  
Ganesh D. Sharma ◽  
S. A. Siddiqui ◽  
Agapi Nikiforou ◽  
Galateia E. Zervaki ◽  
Irene Georgakaki ◽  
...  

A mono(carboxy)porphyrin-triazine-(bodipy)2triad(PorCOOH)(BDP)2has been used as a donor with ([6,6]-phenyl C71butyric acid methyl ester) (PC71BM) as an acceptor, in BHJ - solution processed organic solar cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 99685-99694 ◽  
Author(s):  
Yuvraj Patil ◽  
Rajneesh Misra ◽  
F. C. Chen ◽  
M. L. Keshtov ◽  
Ganesh D. Sharma

Two small molecules DPP3 (D–π–A) and DPP4 (D–π–A–π–D) with triphenylamine (TPA) donors and diketopyrrolopyrrole (DPP) acceptors linked with ethyne linkers were designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction.


2013 ◽  
Vol 4 ◽  
pp. 680-689 ◽  
Author(s):  
Gisela L Schulz ◽  
Marta Urdanpilleta ◽  
Roland Fitzner ◽  
Eduard Brier ◽  
Elena Mena-Osteritz ◽  
...  

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.


Sign in / Sign up

Export Citation Format

Share Document