Unravelling hydrogen bonding interactions of tryptamine–water dimer from neutral to cation

2017 ◽  
Vol 19 (37) ◽  
pp. 25260-25269 ◽  
Author(s):  
Zongyuan Liu ◽  
Carl O. Trindle ◽  
Quanli Gu ◽  
Wei Wu ◽  
Peifeng Su

The physical origin for the three intermolecular hydrogen bonds in the neutral and cationic forms of the tryptamine–water dimer is explored.

Author(s):  
Palanisamy Revathi ◽  
Thangavelu Balakrishnan ◽  
Kandasamy Ramamurthi ◽  
Subbiah Thamotharan

In the title coordination polymer, {[Sr(C2H5NO2)2(H2O)3]Br2}n, the Sr2+ion and one of the water molecules are located on twofold rotation axes. The alkaline earth ion is nine-coordinated by three water O atoms and six O atoms of the carboxylate groups of four glycine ligands, two in a chelating mode and two in a monodentate mode. The glycine molecule exists in a zwitterionic form and bridges the cations into chains parallel to [001]. The Br−counter-anions are located between the chains. Intermolecular hydrogen bonds are formed between the amino and carboxylate groups of neighbouring glycine ligands, generating a head-to-tail sequence. Adjacent head-to-tail sequences are further interconnected by intermolecular N—H...Br hydrogen-bonding interactions into sheets parallel to (100). O—H...Br and O—H...O hydrogen bonds involving the coordinating water molecules are also present, consolidating the three-dimensional hydrogen-bonding network.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 523 ◽  
Author(s):  
Chih-Feng Wang ◽  
Dula Daksa Ejeta ◽  
Jian-Yi Wu ◽  
Shiao-Wei Kuo ◽  
Ching-Hsuan Lin ◽  
...  

The ability to tune the surface properties of a polymer film in a simple and effective manner is important for diverse biological, industrial, and environmental applications. In this work, we investigated whether or not the surface free energy of poly(vinyl phenol; PVPh) can be tuned by adjusting the casting solvent and the thermal treatment time, which alters the proportions of intra-and intermolecular hydrogen bonding interactions. Compared to the untreated sample, in tetrahydrofuran (THF) system, the thermal treatment resulted in a lower proportion of intermolecular hydrogen bonds and a concomitant decrease in the surface free energy (from 39.3 to 18.8 mJ/m2). In contrast, the thermal treatment in propylene glycol methyl ether acetate (PGMEA) and ethyl-3-ethoxypropionate (EEP) systems increased the proportion of intermolecular hydrogen bonds and the surface free energy of the polymer thin films, from 45.0 to 54.3 mJ/m2 for PGMEA and from 45.5 to 52.9 mJ/m2 for EEP. Controlling intermolecular hydrogen-bonding interactions is a unique and easy method for tuning the surface free energies of polymer substances.


2006 ◽  
Vol 62 (4) ◽  
pp. o1338-o1339 ◽  
Author(s):  
A. K. Bauri ◽  
Sabine Foro ◽  
Hans J. Lindner ◽  
S. K. Nayak

The title compound, malabaricone A [systematic name: 1-(2,6-dihydroxyphenyl)-9-phenylnonan-1-one], C21H26O3, contains two benzene rings linked through a C9 alkyl chain. Both intra- and intermolecular O—H...O hydrogen-bonding interactions stabilize the packing. The intermolecular hydrogen bonds result in the formation of an infinite zigzag chain.


Author(s):  
Matthew L. Nisbet ◽  
Kenneth R. Poeppelmeier

The crystal structures of three bridged bimetallic molecular compounds, namely, triaqua-2κ3 O-μ-fluorido-pentafluorido-1κ5 F-(1,10-phenanthroline-2κ2 N,N′)copper(II)titanium(IV) monohydrate, [Cu(TiF6)(phen)(H2O)3]·H2O (phen is 1,10-phenanthroline, C12H8N2), (I), triaqua-2κ3 O-μ-fluorido-pentafluorido-1κ5 F-(1,10-phenanthroline-2κ2 N,N′)copper(II)zirconium(IV) monohydrate, [Cu(ZrF6)(phen)(H2O)3]·H2O, (II), and triaqua-2κ3 O-μ-fluorido-pentafluorido-1κ5 F-(1,10-phenanthroline-2κ2 N,N′)copper(II)hafnium(IV) monohydrate, [Cu(HfF6)(phen)(H2O)3]·H2O, (III), and one molecular salt, bis[diaquafluorido(1,10-phenanthroline-κ2 N,N′)copper(II)] hexafluoridohafnate(IV) dihydrate, [CuF(phen)(H2O)2]2[HfF6]·2H2O, (IV), are reported. The bridged bimetallic compounds adopt Λ-shaped configurations, with the octahedrally coordinated copper(II) center linked to the fluorinated early transition metal via a fluoride linkage. The extended structures of these Λ-shaped compounds are organized through both intra- and intermolecular hydrogen bonds and intermolecular π–π stacking. The salt compound [Cu(phen)(H2O)2F]2[HfF6]·H2O displays an isolated square-pyramidal Cu(phen)(H2O)2F+ complex linked to other cationic complexes and isolated HfF6 2− anions through intermolecular hydrogen-bonding interactions.


2009 ◽  
Vol 65 (6) ◽  
pp. o1429-o1429
Author(s):  
Zhen-Dong Zhao ◽  
Yu-Xiang Chen ◽  
Yu-Min Wang ◽  
Liang-Wu Bi

The title compound, also known as isopimaric acid, C20H30O2, was isolated from slash pine rosin. There are two unique molecules in the unit cell. The two cyclohexane rings have classical chair conformations. The cyclohexene ring represents a semi-chair. The molecular conformation is stabilized by weak intramolecular C—H...O hydrogen-bonding interactions. The molecules are dimerized through their carboxyl groups by O—H...O hydrogen bonds, formingR22(8) rings.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1020-C1020
Author(s):  
Masood Parvez ◽  
Muhammad Bakhtiar ◽  
Muhammad Baqir ◽  
Muhammad Zia-ur-Rehman

Chalcones constitute an important class of bioactive drug targets in the pharmaceutical industry that includes anti-ulcerative drug sofalcone. In continuation of our work, the crystal structures of four closely related 1-phenyl-piperidine based chalcones will be presented. I: C19 H21NOS, MW = 311.43, T = 173(2) K, λ = 0.71073 Å, Orthorhombic, P b c a, a = 10.1045(4), b = 10.5358(4), c = 30.6337(12) Å, V = 3261.2(2) Å3, Z = 8, Dc = 1.269 Mg/m3, F (000) = 1328, R [I>2σ(I)] = 0.059. II: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.9236(2), b = 11.0227(2), c = 30.8168(6) Å, V = 3031.21(11) Å3 Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.035. III: C18H19NOS, MW = 297.40, T = 173(2) K, λ = 1.54178 Å, Orthorhombic, P b c a, a = 8.82990(10), b = 11.0061(2), c = 31.2106(5) Å, V = 3033.13(8) Å3, Z = 8, Dc = 1.303 Mg/m3, F (000) = 1264, R [I>2σ(I)] = 0.048. IV: C18H18ClNOS, MW = 331.84, T = 173(2) K, λ = 0.71073 Å, Monoclinic, P 21/c, a = 14.1037(4), b = 11.3153(3), c = 10.1290(2) Å, β = 101.1367(14)0, V = 1586.02(7) Å3, Z = 4, Dc = 1.390 Mg/m3, F (000) = 696, R [I>2σ(I)] = 0.038. The crystals of I, II and III are isomorphous. In all structures, the piperidine rings are in chair conformations, thiophene rings are essentially planar and the C=C bonds in the prop-2-en-1-one fragment adopt E-conformation. All crystal structures are devoid of any classical hydrogen bonds. However, non-classical hydrogen bonding interactions of the type C---H...O in compounds II, III and IV link the molecules into chains extended along the b-axis. Moreover, C---H...Cg interactions involving thiophene rings in I and III and benzene ring in IV and π...π interactions between benzene rings lying about inversion centers are present in II and III.


2017 ◽  
Vol 53 (24) ◽  
pp. 3426-3429 ◽  
Author(s):  
Toshiki Higashino ◽  
Akira Ueda ◽  
Junya Yoshida ◽  
Hatsumi Mori

Stabilization of a metallic state was successfully achieved by applying hydrogen-bonding interactions in a novel benzothienobenzothiophene-based molecular conductor.


2000 ◽  
Vol 55 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Teresa Borowiak ◽  
Irena Wolska ◽  
Artur Korzański ◽  
Wolfgang Milius ◽  
Wolfgang Schnick ◽  
...  

The crystal structures of two compounds containing enaminone heterodiene systems and forming intermolecular hydrogen bonds N-H·O are reported: 1) 3-ethoxycarbonyl-2-methyl-4-pyridone (hereafter ETPY) and 2) 3-ethoxycarbonyl-2-phenyl-6-methoxycarbonyl-5,6-di-hydro-4-pyridone (hereafter EPPY). The crystal packing is controlled by intermolecular hydro­ gen bonds N-H·O = C connecting the heteroconjugated enaminone groups in infinite chains. In ETPY crystals the intermolecular hydrogen bond involves the heterodienic pathway with the highest π-delocalization that is effective for a very short N·O distance of 2.701(9) Å (average from two molecules in the asymmetric unit). Probably due to the steric hindrance, the hydrogen bond in EPPY is formed following the heterodienic pathway that involves the ester C = O group, although π-delocalization along this pathway is less than that along the pyridone-part pathway resulting in a longer N·O distance of 2.886(3) Å


Author(s):  
Jan Vícha ◽  
Cina Foroutan-Nejad ◽  
Michal Straka

Illusive Au<sup>I/III</sup>···H hydrogen bonds and their effect on structure and dynamics of molecules have been a matter of debate. While a number of X-ray studies reported gold compounds with short Au<sup>I/III</sup>···H contacts, a solid spectroscopic evidence for Au<sup>I/III</sup>···H bonding has been missing. Recently<a></a><a>, Bakar <i>et al.</i></a> (NATURE COMMUNICATIONS 8:576) reported compound with four short Au···H contacts (2.61­–2.66 Å; X-ray determined). Assuming the central cluster be [Au<sub>6</sub>]<sup>2+</sup>and observing the <sup>1</sup>H (<sup>13</sup>C) NMR resonances at relevant H(C) nuclei deshielded with respect to precursor compound, the authors concluded with reservations that <i>“the present Au···H–C interaction is a kind of “hydrogen bond”, where the [Au<sub>6</sub>]<sup>2+</sup>serves as an acceptor”</i>. Here, we show that the Au<sub>6</sub>cluster in their compound bears negative charge and the Au···H contacts lead to a weak (~1 kcal/mol) auride···hydrogen bonding interactions, though unimportant for the overall stability of<b></b>the molecule. Additionally, computational analysis of NMR chemical shifts reveals that the deshielding effects at respective hydrogen nuclei are not directly related to Au···H–C hydrogen bonding .


Sign in / Sign up

Export Citation Format

Share Document