Post-cycloaddition modification of a porous MOF for improved GC separation of ethanol and water

2017 ◽  
Vol 46 (21) ◽  
pp. 7092-7097 ◽  
Author(s):  
Ya-Jun Zhang ◽  
Cheng Chen ◽  
Li-Xuan Cai ◽  
Bin Tan ◽  
Xiao-Dong Yang ◽  
...  

An olefin-containing porous framework undergoes [2 + 2] cycloaddition to give post-modified pore space, accompanied by turn-on luminescence upon light irradiation. The photochemical modification reinforces the supramolecular network and improves GC separation performance of ethanol and water.

Author(s):  
Andrew W. Woods ◽  
Michael J. Stock

The injection of hot magma into a sill can lead to heating and melting of the walls and roof of the reservoir while the injected magma cools and crystallizes. If the crystals are relatively dense, they will try to sediment from the injected magma to form a cumulate layer. In this cumulate layer, the crystals form a porous framework which traps the melt as it is built up. As the melt within the sill continually cools and precipitates dense crystals, there will be a gradual reduction in the density of the remaining silicate liquid. As a result, the melt which is progressively trapped in the pore space of the cumulate layer will become stably stratified in density. Using an idealized model of the fluid mechanical and thermodynamical principles, we explore some of the controls on the thickness and density stratification of cumulate layers following replenishment of a sill-like magma chamber. We show the balance between jamming of the crystal laden melt to form a homogeneous layer and the formation of a stratified cumulate zone depends on the cooling time scale compared to the sedimentation time scale. A key finding is that the composition and stratification in a packed crystal–melt suspension and the associated cumulate layer formed by cooling an intrusion of hot melt injected into the crust may have considerable variability, depending on the properties of the overlying roof melt and the size and hence fall speed of crystals which form in the melt. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Author(s):  
Byunghee Hwang ◽  
Tae-Il Kim ◽  
Hyunjin Kim ◽  
Sungjin Jeon ◽  
Yongdoo Choi ◽  
...  

A ubiquinone-BODIPY photosensitizer self-assembles into nanoparticles (PS-Q-NPs) and undergoes selective activation within the highly reductive intracellular environment of tumors, resulting in “turn-on” fluorescence and photosensitizing activities.


1973 ◽  
Vol 18 (12) ◽  
pp. 626-627
Author(s):  
EDWARD A. JACOBSON
Keyword(s):  

2004 ◽  
Author(s):  
Kate I. Podany ◽  
Michael S. Wogalter ◽  
Christopher B. Mayhorn

2014 ◽  
Vol 29 (9) ◽  
pp. 941
Author(s):  
JIANG Jin-Long ◽  
WANG Qiong ◽  
HUANG Hao ◽  
ZHANG Xia ◽  
WANG Yu-Bao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document