Understanding the microbiological, organic and inorganic contaminant removal capacity of ceramic water filters doped with different silver nanoparticles

2017 ◽  
Vol 4 (12) ◽  
pp. 2348-2355 ◽  
Author(s):  
R. K. Sullivan ◽  
M. Erickson ◽  
V. A. Oyanedel-Craver

Pathogen removal efficacy of ceramic water filters (CWF) impregnated with silver nanoparticles (nAg) has been well studied, however scarce information is available about the impact of nAg surface functionalization and removal of inorganic and organic pollutants.

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 285
Author(s):  
Nkosinobubelo Ndebele ◽  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
James A. Smith

In this study, we report on field testing of ceramic water filters (CWFs) fabricated using a new method of silver application (using silver nitrate as a raw material) compared to conventionally manufactured CWFs (fabricated with silver nanoparticles). Both types of filters were manufactured at the PureMadi ceramic filter production facility in Dertig, South Africa. Thirty households received filters fabricated with silver nitrate (AgNO3), and ten of those households were given an extra filter fabricated with silver nanoparticles. Filter performance was quantified by measurement of total coliform and Escherichia coli (E. coli) removal and silver residual concentration in the effluent. Silver-nitrate CWFs had removal efficiencies for total coliforms and E. coli of 95% and 99%, respectively. A comparison of the performance of silver-nitrate and silver-nanoparticle filters showed that the different filters had similar levels of total coliform and E. coli removal, although the silver nitrate filters produced the highest average removal of 97% while silver nanoparticles filters recorded an average removal of 85%. Average effluent silver levels were below 10 ppb for the silver-nitrate and silver-nanoparticle filters, which was significantly below the Environmental Protection Agencies of the United States (EPA) and World Health Organization (WHO) secondary guidelines of 100 ppb. Silver-nitrate filters resulted in the lowest effluent silver concentrations, which could potentially increase the effective life span of the filter. A cost analysis shows that it is more economical to produce CWFs using silver nitrate due to a reduction in raw-material costs and reduced labor costs for production. Furthermore, the production of silver-nitrate filters reduces inhalation exposure of silver by workers. The results obtained from this study will be applied to improve the ceramic filtration technology as a point-of-use (POU) water treatment device and hence reduce health problems associated with microbial contamination of water stored at the household level.


2021 ◽  
pp. 545-554
Author(s):  
Harry J. Gaebler ◽  
Jack M. Hughes ◽  
Hermann J. Eberl

Author(s):  
Khaled Greish ◽  
Abdulelah Abdullah Alqahtani ◽  
Abdulla Falah Alotaibi ◽  
Ahmed Mohamed Abdulla ◽  
Aysha Tariq Bukelly ◽  
...  

Silver Nanoparticles (AgNPs), an epitome of nanotechnology, appear in everyday products such as water filters, printer ink, toothpaste, food packaging and cosmetics mostly due to their bactericidal properties. Given this high level of public exposure, the safety of AgNPs has never been fully established. The unsafe use of AgNPs could pose a real threat, not only to public health but also to economic growth in many industries. In this paper, we tested the effect of AgNPs on memory, learning, social behaviour and motor function of BALB/C mice. Outcomes of the present study suggested an impairment of these functions in AgNPs treated groups. Overall, obtained data support the evidence that the systemic exposure to AgNPs may result in alteration of the cerebral cognition and warrants further consideration on the impact of the AgNPs on human health with respect to their potential neurotoxicity.


2010 ◽  
Vol 61 (4) ◽  
pp. 408-412 ◽  
Author(s):  
Curtis Larimer ◽  
Nicole Ostrowski ◽  
Jacquelyn Speakman ◽  
Ian Nettleship

2018 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
E. McBean ◽  
◽  
G. Huang ◽  
Yongping Li ◽  
Yanfeng Li ◽  
...  

1995 ◽  
Vol 31 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Graham F. White

Many organic pollutants, especially synthetic surfactants, adsorb onto solid surfaces in natural and engineered aquatic environments. Biofilm bacteria on such surfaces make major contributions to microbial heterotrophic activity and biodegradation of organic pollutants. This paper reviews evidence for multiple interactions between surfactants, biodegradative bacteria, and sediment-liquid interfaces. Biodegradable surfactants e.g. SDS, added to a river-water microcosm were rapidly adsorb to sediment surface and stimulated the indigenous bacteria to attach to the sediment particles. Recalcitrant surfactants and non-surfactant organic nutrients did not stimulate attachment Attachment of bacteria was maximal when biodegradation was fastest, and was reversed when biodegradation was complete. Dodecanol, the primary product of SDS-biodegradation, markedly stimulated attachment. When SDS was added to suspensions containing sediment and either known degraders or known non-degraders, only the degraders became attached, and attachment accelerated surfactant biodegradation to dodecanol. These cyclical cooperative interactions have implications for the design of biodegradability-tests, the impact of surfactant adjuvants on biodegradability of herbicides/pesticides formulated with surfactants, and the role of surfactants used to accelerate bioremediation of hydrocarbon-polluted soils.


Sign in / Sign up

Export Citation Format

Share Document