scholarly journals In vitro assessment of the ability of probiotics, blueberry and food carbohydrates to prevent S. pyogenes adhesion on pharyngeal epithelium and modulate immune responses

2017 ◽  
Vol 8 (10) ◽  
pp. 3601-3609 ◽  
Author(s):  
Valentina Taverniti ◽  
Alessandro Dalla Via ◽  
Mario Minuzzo ◽  
Cristian Del Bo’ ◽  
Patrizia Riso ◽  
...  

A combination of guar, blueberry and lactobacilli may represent a novel strategy to preserve pharyngeal health.


Author(s):  
Kanae Yamada ◽  
Kei Masuda ◽  
Shota Ida ◽  
Hiroe Tada ◽  
Minori Bando ◽  
...  

AbstractThe evaluation of antitumor immune responses is essential for immune monitoring to predict clinical outcomes as well as treatment efficacies in cancer patients. In this study, we produced two tumor antigen (TA) proteins, melanoma antigen family A4 and wild type p53, using TG silkworm systems and evaluated anti-TA-specific immune responses by enzyme-linked immunosorbent spot assays in patients with head and neck cancer. Eleven (61.1%) of 18 patients showed significant IFN-γ production in response to at least one TA; however, the presence of TA-specific immune responses did not significantly contribute to better prognosis (overall survival, p = 0.1768; progression-free survival, p = 0.4507). Further studies will need to be performed on a larger scale to better assess the clinical significance of these systems. The production of multiple TA proteins may provide new avenues for the development of immunotherapeutic strategies to stimulate a potent and specific immune response against tumor cells as well as precise assessment of antitumor immune responses in cancer patients.



2000 ◽  
Vol 27 (12) ◽  
pp. 1024-1029 ◽  
Author(s):  
P. Hahn ◽  
M. Gustav ◽  
E. Hellwig


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
VK Manda ◽  
OR Dale ◽  
C Awortwe ◽  
Z Ali ◽  
IA Khan ◽  
...  


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen Sisakht ◽  
Amir Mahmoodzadeh ◽  
Mohammadsaeid Zahedi ◽  
Davood Rostamzadeh ◽  
Amin Moradi Hasan-Abad ◽  
...  

Background: Human papillomavirus (HPV) is the main biological agent causing sexually transmitted diseases (STDs), including precancerous lesions and several types of prevalent cancers. To date, numerous types of vaccines are designed to prevent high-risk HPV. However, their prophylactic effect is not the same and does not clear previous infections. Therefore, there is an urgent need for developing therapeutic vaccines that trigger cell-mediated immune responses for the treatment of HPV. The HPV16 E6 and E7 proteins are ideal targets for vaccine therapy against HPV. Fusion protein vaccines, which include both immunogenic interest protein and an adjuvant for augmenting the immunogenicity effects, are theoretically capable of guarantee the power of the immune system against HPV. Method: A vaccine construct, including HPV16 E6/E7 proteins along with a heat shock protein GP96 (E6/E7-NTGP96 construct), was designed using in silico methods. By the aid of the SWISS-MODEL server, the optimal 3D model of the designed vaccine was selected, followed by physicochemical and molecular parameters were performed using bioinformatics tools. Docking studies were done to evaluate the binding interaction of the vaccine. Allergenicity, immunogenicity, B, and T cell epitopes of the designed construct were predicted. Results: Immunological and structural computational results illustrated that our designed construct is potentially proper for stimulation of cellular and humoral immune responses against HPV. Conclusion: Computational studies showed that the E6/E7-NTGP96 construct is a promising candidate vaccine that needs further in vitro and in vivo evaluations.



2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.



Sign in / Sign up

Export Citation Format

Share Document