In silico approach for designing a novel recombinant fusion protein as a Candidate Vaccine against HPV

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen Sisakht ◽  
Amir Mahmoodzadeh ◽  
Mohammadsaeid Zahedi ◽  
Davood Rostamzadeh ◽  
Amin Moradi Hasan-Abad ◽  
...  

Background: Human papillomavirus (HPV) is the main biological agent causing sexually transmitted diseases (STDs), including precancerous lesions and several types of prevalent cancers. To date, numerous types of vaccines are designed to prevent high-risk HPV. However, their prophylactic effect is not the same and does not clear previous infections. Therefore, there is an urgent need for developing therapeutic vaccines that trigger cell-mediated immune responses for the treatment of HPV. The HPV16 E6 and E7 proteins are ideal targets for vaccine therapy against HPV. Fusion protein vaccines, which include both immunogenic interest protein and an adjuvant for augmenting the immunogenicity effects, are theoretically capable of guarantee the power of the immune system against HPV. Method: A vaccine construct, including HPV16 E6/E7 proteins along with a heat shock protein GP96 (E6/E7-NTGP96 construct), was designed using in silico methods. By the aid of the SWISS-MODEL server, the optimal 3D model of the designed vaccine was selected, followed by physicochemical and molecular parameters were performed using bioinformatics tools. Docking studies were done to evaluate the binding interaction of the vaccine. Allergenicity, immunogenicity, B, and T cell epitopes of the designed construct were predicted. Results: Immunological and structural computational results illustrated that our designed construct is potentially proper for stimulation of cellular and humoral immune responses against HPV. Conclusion: Computational studies showed that the E6/E7-NTGP96 construct is a promising candidate vaccine that needs further in vitro and in vivo evaluations.

2021 ◽  
Author(s):  
Tahoora Mousavi ◽  
Reza Valadan ◽  
Alireza Rafiei ◽  
Ali Abbasi ◽  
Mohammad Reza Haghshenas

Abstract Objectives Human papillomavirus infection (HPV) is the most common viral infection which is causes of cervical, penal, vulvar, anal and, oropharyngeal cancer. E7 protein of HPV is a suitable target for induction of T cell responses and controlling HPV-related cancer. The aim of the current study was to designed and evaluated a novel fusion protein containing the different E7 proteins of the HPV 16, 18, 6 and 11, linked to the cell-penetrating peptide HIV-1 Tat 49-57, in order to improve cytotoxic immune responses in in-vitro and in-vivo. Results In this study whole sequence of HPV16,18,6,11 E7-Tat (47-57) and HPV16,18,6,11 E7 cloned into the vector and expressed in E.coli (BL21). The purified protein was confirmed by SDS page and western blotting and then injected into the C57BL/6 mice. The efficiency of the fusion protein vaccine was assessed by antibody response assay, cytokine assay (IL-4 and IFN-γ), CD+8 cytotoxicity assay and tumor challenge experiment. Result showed that fusion proteins containing Adjuvant (IFA,CFA) could express higher titer of antibody. Also, we showed that vaccination with E7-Tat and, E7-Tat-ADJ induced high frequencies of E7-specific CD8+ T cells and CD107a expression as well as IFN-γ level and enhanced long-term survival in the therapeutic animal models. Conclusion Our finding suggested that this novel fusion protein vaccine was able to induce therapeutic efficacy and immunogenicity by improving CD8+ T cell in TC-1 tumor bearing mice; so this vaccine may be appreciated for research against HPV and tumor immunotherapies.


2020 ◽  
Author(s):  
Tahoora Mousavi ◽  
Reza Valadan ◽  
Alireza Rafiei ◽  
Ali Abbasi ◽  
Mohammad Reza Haghshenas

Abstract Objective: Human papillomavirus infection (HPV) is the most common viral infection which is causes of cervical, penal, vulvar, anal and, oropharyngeal cancer. E7 protein of HPV is a suitable target for induction of T cell responses and controlling HPV-related cancer. The aim of the current study was to designed and evaluated a novel fusion protein containing the different E7 proteins of the HPV 16, 18, 6 and 11, linked to the cell-penetrating peptide HIV-1 Tat 49-57, in order to improve cytotoxic immune responses in in-vitro and in-vivo. Methods: In this study whole sequence of HPV16,18,6,11 E7-Tat (47-57) and HPV16,18,6,11 E7 cloned into the vector and expressed in E.coli (BL21). The purified protein was confirmed by SDS page and western blotting and then injected into the C57BL/6 mice. The efficiency of the fusion protein vaccine was assessed by antibody response assay, cytokine assay (IL-4 and IFN-γ), CD+8 cytotoxicity assay and tumor challenge experiment. Results: Result showed that fusion proteins containing Adjuvant (IFA,CFA) could express higher titer of antibody. Also, we showed that vaccination with E7-Tat and, E7-Tat-ADJ induced high frequencies of E7-specific CD8+ T cells and CD107a expression as well as IFN-γ level and enhanced long-term survival in the therapeutic animal models. Conclusion: Our finding suggested that this novel fusion protein vaccine was able to induce therapeutic efficacy and immunogenicity by improving CD8+ T cell in TC-1 tumor bearing mice; so this vaccine may be appreciated for research against HPV and tumor immunotherapies.


Author(s):  
Elahe Akbari ◽  
Kimia Kardani ◽  
Ali Namvar ◽  
Soheila Ajdary ◽  
Esmat Mirabzadeh Ardakani ◽  
...  

2017 ◽  
Vol 118 (04) ◽  
pp. 189-195 ◽  
Author(s):  
S. Hekmat ◽  
S. D. Siadat ◽  
M. R. Aghasadeghi ◽  
S. M. Sadat ◽  
G. Bahramali ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10258
Author(s):  
Mabrouk Horchani ◽  
Niels V. Heise ◽  
Sophie Hoenke ◽  
René Csuk ◽  
Abdel Halim Harrath ◽  
...  

To explore a new set of anticancer agents, a novel series of pyrazolo[4,3-e]pyrido[1,2-a]pyrimidine derivativeshave been designed and synthesized viacyclocondensation reactions of pyrazolo-enaminone with a series of arylidenemalononitriles; compound 5 was obtained from 5-amino-4-cyanopyrazole. The structures of the target compounds were investigated by spectral techniques and elemental analysis (IR, UV–Vis, 1H NMR, 13C NMR and ESI-MS). All compounds were evaluated for their in vitro cytotoxicity employing a panel of different human tumor cell lines, A375, HT29, MCF7, A2780, FaDu as well as non-malignant NIH 3T3 and HEK293 cells. It has been found that the pyrazolo-pyrido-pyrimidine analog bearing a 4-Br-phenyl moiety was the most active toward many cell lines with EC50 values ranging between 9.1 and 13.5 µM. Moreover, in silico docking studies of the latter with six anticancer drug targets, i.e., DHFR, VEGFR2, HER-2/neu, hCA-IX, CDK6 and LOX5, were also performed, in order to gain some insights into their putative mode of binding interaction and to estimate the free binding energy of this bioactive molecule.


2021 ◽  
Author(s):  
Kaveri Krishnasamy ◽  
Gracy Fathima Selvaraj ◽  
Kiruba Ramesh ◽  
Padmaoriya Padmanabhan ◽  
Vidya Gopalan ◽  
...  

The emergence of a novel coronavirus in China in late 2019 has turned into a SARS-CoV-2 pandemic affecting several millions of people worldwide in a short span of time with high fatality. The crisis is further aggravated by the emergence and evolution of new variant SARS-CoV-2 strains in UK during December, 2020 followed by their transmission to other countries. A major concern is that prophylaxis and therapeutics are not available yet to control and prevent the virus which is spreading at an alarming rate, though several vaccine trials are in the final stage. As vaccines are developed through various strategies, their immunogenic potential may drastically vary and thus pose several challenges in offering both arms of immunity such as humoral and cell-mediated immune responses against the virus. In this study, we adopted an immunoinformatics-aided identification of B cell and T cell epitopes in the Spike protein, which is a surface glycoprotein of SARS-CoV-2, for developing a new Multiepitope vaccine construct (MEVC). MEVC has 575 amino acids and comprises adjuvants and various cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes that possess the highest affinity for the respective HLA alleles, assembled and joined by linkers. The computational data suggest that the MEVC is non-toxic, non-allergenic and thermostable with the capability to elicit both humoral and cell-mediated immune responses. The population coverage of various countries affected by COVID-19 with respect to the selected B and T cell epitopes in MEVC was also investigated. Subsequently, the biological activity of MEVC was assessed by bioinformatic tools using the interaction between the vaccine candidate and the innate immune system receptors TLR3 and TLR4. The epitopes of the construct were analyzed with that of the strains belonging to various clades including the new variant UK strain having multiple unique mutations in S protein. Due to the advantageous features, the MEVC can be tested in vitro for more practical validation and the study offers immense scope for developing a potential vaccine candidate against SARS-CoV-2 in view of the public health emergency associated with COVID-19 disease caused by SARS-CoV-2.


Author(s):  
Mabrouk Horchani ◽  
Niels V. Heise ◽  
Sophie Hoenke ◽  
Rene Csuk ◽  
Abdel Halim Harrath ◽  
...  

To explore a new set of anticancer agents, a novel series of pyrazolo[4,3-e]pyrido[1,2-a]pyrimidine derivatives 7a-l have been designed and synthesized via cyclocondensation reactions of pyrazolo-enaminone 5 with a series of arylidene malononitriles; compound 5 was obtained from 5-amino-4-cyanopyrazole (3). The structures of the target compounds 7a-l were investigated by spectral techniques and elemental analysis (IR, UV-Vis, 1H NMR, 13C NMR and ESI-MS). All compounds were evaluated for their in vitro cytotoxicity employing a panel of different human tumor cell lines, A375, HT29, MCF7, A2780, FaDu as well as non-malignant NIH 3T3 and HEK293 cells. It has been found that the conjugate 7e was the most active towards many cell lines with EC50 values ranging between 9.1 and 13.5 µM, respectively. Moreover, in silico docking studies of 7e with six anticancer drug targets, i.e. DHFR, VEGFR2, HER-2/neu, hCA-IX, CDK6 and LOX also was performed, in order to gain some insights into their putative mode of binding interaction and to estimate the free binding energy of this bioactive molecule.


Author(s):  
Anurag Verma ◽  
Piyush Mittal ◽  
Milind S. Pande ◽  
Neelanchal Trivedi

Nipah Virus is a zoo tonic virus and has re-emerged again with more deadliness. NiV has infected many animals and humans worldwide and a huge loss to life has been faced. NiV contains a Fusion protein on its outer membrane which helps in the virus entry into the host cell. This fusion protein is a virulent factor and is a major anti-viral target. Many medicinal plants have been used against viral diseases, current research aims towards the potential of three daily dietary food elements that can be used as an anti-viral agent. In-silico studies are performed with 4-hyroxypanduratin A, 6-gingerol and Luteolin against the NiV-F and binding energies were calculated. It was reported that these phyto-compounds have good negative binding energies and they have the promising potential against Nipah Virus. Further in-vitro research can be performed with these phyto-compounds to design a specific drug against Nipah Virus.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3496-3496 ◽  
Author(s):  
Pedro Paz ◽  
Jinger Xie ◽  
Fred Aswad

Abstract Background: BAY 1093884 is a fully human monoclonal antibody against tissue factor pathway inhibitor (TFPI) developed as a bypass agent for patients with hemophilia with or without inhibitors. It restores insufficient thrombin burst, leading to stable clot formation in hemophilic conditions in vitro, and effectively stops bleeding in vivo. Aims: Antibody targeting of TFPI provides the advantages of monoclonal antibodies, such as longer circulation half-life, and the possibility of subcutaneous administration. However, antibody therapeutics can present the challenge of delivering unwanted effects or activities, such as antibody-dependent cell cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) that target healthy tissues in the patient. Additionally, antibody sequence engineering that optimizes binding to the target protein may introduce immunogenic epitopes that can induce antidrug antibodies and compromise efficacy. Methods: In vitro assays used primary human umbilical vein endothelial cells and EA-hy926 cell lines as target cells. Total peripheral blood mononuclear cells (PBMCs) and purified natural killer (NK) cells isolated from healthy donors were used as effector cells for ADCC. Pooled human serum complement (Quidel®) was used for CDC assays. A proprietary immunogenicity scoring program for T-cell epitopes (Bayer HealthCare) was used to determine immunogenic potential of BAY 1093884 relative to antibodies in the market. Results: In vitro ADCC assessment of BAY 1093884 using PBMCs and NK cells isolated from healthy donors showed no lytic activity against TFPI-expressing primary and immortalized cell lines. Furthermore, no CDC activity using pooled serum complement was detected with BAY 1093884. In silico scoring for T-cell epitopes using a human leukocyte antigen DR-weighted algorithm compared favorably to therapeutic antibodies that have been reported to have low immunogenicity in the clinic. Conclusion: In vitro and in silico immunoprofiling has aided in the design of the bypass anti-TFPI immunoglobulin G2 antibody BAY 1093884 with low toxicity potential and immunogenicity in humans. Disclosures Paz: Bayer HealthCare: Employment. Xie:Bayer HealthCare: Employment. Aswad:Bayer HealthCare: Employment.


Sign in / Sign up

Export Citation Format

Share Document