Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants

2018 ◽  
Vol 42 (5) ◽  
pp. 3246-3259 ◽  
Author(s):  
Jahangir Ahmad ◽  
Kowsar Majid

Synthesis of efficient CdO based photocatalysts for enhanced visible light driven photocatalytic degradation of organic pollutants mostly emphasize on (1) increase of surface area of the photocatalyst and (2) high charge separation and suppressed recombination of photogenerated electron–hole pairs.

2015 ◽  
Vol 3 (8) ◽  
pp. 4652-4658 ◽  
Author(s):  
Zhihong Chen ◽  
Fan Bing ◽  
Qiong Liu ◽  
Zhengguo Zhang ◽  
Xiaoming Fang

The excellent photocatalytic activity of Ag3PO4/Ag/SiC can be ascribed to the efficient separation of photogenerated electron–hole pairs through the Z-scheme.


NANO ◽  
2019 ◽  
Vol 14 (09) ◽  
pp. 1950111
Author(s):  
Hongjin Liu ◽  
Yu Wang ◽  
Jun Lv ◽  
Guangqing Xu ◽  
Xinyi Zhang ◽  
...  

Based on U-g-C3N4 (U-gCN) and T-g-C3N4 (T-gCN) prepared with urea and thiourea as raw materials, respectively, a visible-light-driven MoS2-modified U-gCN/T-gCN/MoS2 (UTM) ternary heterojunction photocatalyst was successfully prepared using a sonication and bathing method. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of tetracycline hydrochloride (TC) and Rhodamine B (RhB) under the visible light irradiation. The UTM ternary heterojunction showed remarkably enhanced photocatalytic activity. For the degradation of TC and RhB, the degradation rates of 93.9% and 99.9% have been achieved after being irradiated under visible light for 2[Formula: see text]h and 1[Formula: see text]h, respectively. The enhanced photocatalytic performance can be ascribed to the role of loaded MoS2 cocatalyst and the well-formed interfaces between U-gCN and T-gCN, which not only enhance the light absorption, but also accelerate the separation and transfer of photogenerated electron–hole pairs. Furthermore, UTM ternary heterojunction has excellent recyclability and chemical stability. The photodegradation rates of 89.9% and 96.78% of TC and RhB have been obtained, respectively, after being reused for five times. Sacrificial agent tests demonstrate that [Formula: see text][Formula: see text] is the major reactive species in the photocatalytic reaction system.


2019 ◽  
Vol 48 (10) ◽  
pp. 3486-3495 ◽  
Author(s):  
Juying Lei ◽  
Bin Chen ◽  
Weijia Lv ◽  
Liang Zhou ◽  
Lingzhi Wang ◽  
...  

An inverse opal TiO2/g-C3N4 composite with excellent photogenerated electron–hole separation efficiency and enhanced visible light absorption efficiency was constructed.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 437 ◽  
Author(s):  
Zhiming Sun ◽  
Fang Yuan ◽  
Xue Li ◽  
Chunquan Li ◽  
Jie Xu ◽  
...  

A novel kind of cyanuric-acid-modified graphitic carbon nitride (g-C3N4)/kaolinite (m-CN/KA) composite with enhanced visible light-driven photocatalytic performance was fabricated through a facile two-step process. Rhodamine B (RhB) was taken as the target pollutant to study the photocatalytic performance of the synthesized catalysts. It is indicated that the cyanuric acid modification significantly enhanced photocatalytic activity under visible light illumination in comparison with the other reference samples. The apparent rate constant of m-CN/KA is almost 1.9 times and 4.0 times those of g-C3N4/kaolinite and bare g-C3N4, respectively. The superior photocatalytic performance of m-CN/KA could be ascribed, not only to the generation of abundant pore structure and reactive sites, but also to the efficient separation of the photogenerated electron-hole pairs. Furthermore, the possible photocatalytic degradation mechanism of m-CN/KA was also presented in this paper. It could be anticipated that this novel and efficient, metal-free, mineral-based photocatalytic composite has great application prospects in organic pollutant degradation.


2019 ◽  
Vol 43 (48) ◽  
pp. 19172-19179
Author(s):  
Hong-ji Ren ◽  
Yu-bin Tang ◽  
Wei-long Shi ◽  
Fang-yan Chen ◽  
Yu-song Xu

The red mud/graphene oxide composite photocatalysts with enhanced photocatalytic activity were prepared through a simple ultrasonic mixing method.


Sign in / Sign up

Export Citation Format

Share Document