scholarly journals Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study

Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14730-14739 ◽  
Author(s):  
A. Silvestri ◽  
D. Di Silvio ◽  
I. Llarena ◽  
R. A. Murray ◽  
M. Marelli ◽  
...  

Fluorescence correlation spectroscopy allows the correlation of the state of aggregation in vitro with the intracellular fate of gold NPs for different antifouling coatings.

2012 ◽  
Vol 45 (1) ◽  
pp. 22-28 ◽  
Author(s):  
P. Sri Balaji ◽  
A. V. R. Murthy ◽  
Neha Tiwari ◽  
Sulabha Kulkarni

2006 ◽  
Vol 15 (8) ◽  
pp. 1977-1986 ◽  
Author(s):  
Gertjan Veldhuis ◽  
Mark Hink ◽  
Victor Krasnikov ◽  
Geert van den Bogaart ◽  
Jeroen Hoeboer ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2969
Author(s):  
Aurélie Crepin ◽  
Edel Cunill-Semanat ◽  
Eliška Kuthanová Trsková ◽  
Erica Belgio ◽  
Radek Kaňa

Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.


Soft Matter ◽  
2019 ◽  
Vol 15 (38) ◽  
pp. 7616-7622 ◽  
Author(s):  
Kavindya K. Senanayake ◽  
Namita Shokeen ◽  
Ehsan Akbari Fakhrabadi ◽  
Matthew W. Liberatore ◽  
Ashis Mukhopadhyay

We studied the diffusion of charged gold nanoparticles within a semidilute solution of weakly charged polyelectrolyte, polyacrylic acid (PAA) of high molecular weight (Mw = 106 g mol−1) by using fluorescence correlation spectroscopy (FCS).


2012 ◽  
Vol 393 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Arne Werner ◽  
Victor V. Skakun ◽  
Patrick Ziegelmüller ◽  
Ulrich Hahn

Abstract Here, we present an in vitro assay based on fluorescence correlation spectroscopy (FCS), which allows investigation of the kinetic behaviour of human Dicer. The assay is based on the different mobilities of substrate and product. The change of substrate mobility was independent of the choice of the fluorescence label, allowing exclusion of non-specific photophysical artefacts. Dicer and RNase III cleavage led to different product diffusion times. Single-stranded RNA did not change its mobility after cleavage by both double-strand-specific RNases. In agreement with the literature, the RNase activity of Dicer could be inhibited by substituting Ca2+ for Mg2+. In a defined system of two diffusion species of similar label and mobility differences, such as substrate and product, the linearity of the assay could be proven. An FCS-based enzyme assay is proposed, which allows monitoring of Dicer activity with high specificity in vitro.


Sign in / Sign up

Export Citation Format

Share Document