scholarly journals Characteristics of an oxide/metal/oxide transparent conducting electrode fabricated with an intermediate Cu–Mo metal composite layer for application in efficient CIGS solar cell

RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48113-48119 ◽  
Author(s):  
San Kang ◽  
R. Nandi ◽  
Jae-Kwan Sim ◽  
Jun-Yong Jo ◽  
Uddipta Chatterjee ◽  
...  

CIGS solar cells fabricated with different types of AZO/metal/AZO (AZO/Cu/AZO, AZO/Mo/AZO and AZO/Cu–Mo/AZO) transparent conducting electrodes.

2020 ◽  
Vol 4 (1) ◽  
pp. 362-368 ◽  
Author(s):  
SeongYeon Kim ◽  
Md. Salahuddin Mina ◽  
Kiwhan Kim ◽  
Jihye Gwak ◽  
JunHo Kim

As a Cd-free buffer, In2S3 buffer has been used in Cu(In,Ga)Se2 (CIGS) solar cells.


Author(s):  
Muhammad Hassan Yousuf ◽  
Faisal Saeed ◽  
Haider Ali Tauqeer

Copper indium gallium selenide (CIGS) is an inexpensive material that has the potential to dominate the next-generation photovoltaic (PV) industry. Here we detail computational investigation of CIGS solar cell with encouragement of adopting cuprous dioxide (Cu2O) as a Hole Transport Layer (HTL) for efficient fabricated CIGS solar cells. Although Cu2O as a HTL has been studied earlier for perovskite and other organic/inorganic solar cell yet no study has been detailed on potential application of Cu2O for CIGS solar cells. With the proposed architecture, recombination losses are fairly reduced at the back contact and contribute to enhanced photo-current generation. With the introduction of Cu2O, the overall cell efficiency is increased to 26.63%. The wide-band of Cu2O pulls holes from the CIGS absorber which allows smoother extraction of holes with experiencing lesser resistance. Further, it was also inferred that, HTL also improves the quantum efficiency (QE) for photons with large wavelengths thus increases the cell operating spectrum.


2021 ◽  
Vol 11 (5) ◽  
pp. 2121
Author(s):  
Gyeongjun Lee ◽  
Jiyong Kim ◽  
Sungchul Kim ◽  
Jungho Kim

In general, the optical and electrical characteristics of Cu(In,Ga)Se2 (CIGS) solar cells have been studied under the condition that sunlight is normally incident from the air to the CIGS solar cell having no thick front encapsulation layers. To obtain the calculation results in a realistic module application, we calculate the optical and current–voltage (J–V) characteristics of surface-textured CIGS solar cells by simultaneously considering the thick front encapsulation layers and oblique sunlight incidence. Using the proposed angle-dependent equispaced thickness averaging method (ADETAM), we incoherently model two successive front encapsulation layers of a cover glass layer and an ethylene vinyl acetate (EVA) layer, whose respective thicknesses are greater than the coherence length of sunlight (~0.6 μm). The angular dependences of reflectance spectrum and J–V curves are calculated and compared in a surface-textured CIGS solar cell with and without the inclusion of the two front encapsulation layers. We show that the optical absorption improvement of the surface-textured CIGS solar cell over the planar CIGS solar cell can be over-predicted when the thick front encapsulation layers are not considered in the optical modeling.


2021 ◽  
pp. 2151022
Author(s):  
Kitalu Ricin Ngoy ◽  
Abhay Kumar Singh ◽  
Tien-Chien Jen

An investigation with the individual layer physical property of the CIGS solar cells is a significant parameter to design and fabricate highly efficient devices. Therefore, this work demonstrates the thickness and carrier concentrations doping dependence simulations using SCAPS 1D software. The optimized CIGS solar cells different layer properties such as short-circuit current density ([Formula: see text], open-circuit voltage ([Formula: see text], Fill Factor (FF) and conversion efficiency ([Formula: see text] with varying thickness and doped concentration are presented. This optimized layer by layer simulation work would be useful to build a suitable CIGS solar cell structure. This simulation investigation showed that an optimal CIGS device structure can be fabricated possessing the configuration of a window layer ZnO : Al thickness 0.02 [Formula: see text]m, ZnO layer thickness 0.01 [Formula: see text] m with [Formula: see text] = 10[Formula: see text] cm[Formula: see text] and [Formula: see text] = 10[Formula: see text] cm[Formula: see text], a CdS buffer layer thickness 0.01 [Formula: see text]m with [Formula: see text] = 10[Formula: see text] cm[Formula: see text] and absorber layer CIGS in the thickness range of 1–4 [Formula: see text]m with the doping level range [Formula: see text] = 10[Formula: see text]–10[Formula: see text] cm[Formula: see text], along with the optimal CIGS energy bandgap range of 1.3–1.45 eV. According to optimized simulation results, a CIGS solar cell device can possess electric efficiency 26.61%, FF 82.96%, current density of 38.21 mA/cm2 with the open circuit voltage 0.7977 eV. Hence, these optimized simulation findings could be helpful to provide a path to design and fabricate highly efficient CIGS solar cells devices.


2021 ◽  

The book presents current R&D and new trends in the field of solar cell technologies. Topics covered include fabrication methods, various types of cell design, versatile applications of solar cells, PEDOT:PSS thermoelectric materials, transparent conducting electrodes, simulation models for solar photovoltaic materials, and hybrid materials for solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


2011 ◽  
Vol 95 (12) ◽  
pp. 3419-3423 ◽  
Author(s):  
Woo-Seok Jeong ◽  
Jin-Wook Lee ◽  
Soonil Jung ◽  
Jae Ho Yun ◽  
Nam-Gyu Park

2020 ◽  
Vol 12 (5) ◽  
pp. 6169-6175 ◽  
Author(s):  
Sangyeob Lee ◽  
Jiseong Jang ◽  
Taejun Park ◽  
Young Min Park ◽  
Joon Sik Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document