scholarly journals An alternative approach to kinetic analysis of temperature-programmed reaction data

RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3286-3295 ◽  
Author(s):  
A. S. Portnyagin ◽  
A. P. Golikov ◽  
V. A. Drozd ◽  
V. A. Avramenko

Presented method of kinetic analysis of non-isothermal reaction data provides precise kinetic parameters for different materials with different morphology and particle size.

1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


2021 ◽  
Author(s):  
Kushagra Agrawal ◽  
Alberto Roldan ◽  
Nanda Kishore ◽  
Andrew J Logsdail

The decomposition of formic acid is investigated on the β-Mo<sub>2</sub>C (100) catalyst surface using density functional theory. The dehydration and dehydrogenation mechanism for the decomposition is simulated, and the thermochemistry and kinetics are discussed. The potential energy landscape of the reaction shows a thermodynamically favourable cleavage of H-COOH to form CO; however, the kinetics show that the dehydrogenation mechanism is faster and CO<sub>2</sub> is continuously formed. The effect of HCOOH adsorption on the surface is also analysed, in a temperature-programmed reaction, with the decomposition proceeding at under 350 K and desorption of CO<sub>2</sub> observed.


Sign in / Sign up

Export Citation Format

Share Document