scholarly journals Structural, thermal, and transport properties of La0.67Sr0.33MnO3 nanoparticles synthesized via the sol–gel auto-combustion technique

RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1600-1609 ◽  
Author(s):  
M. Saleem ◽  
Dinesh Varshney

Herein, rare-earth manganite, La0.67Sr0.33MnO3, has been prepared by a citric acid-assisted sol–gel auto-combustion method at a maintained pH value of 11.

2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Bogdan K. Ostafiychuk ◽  
Larysa S. Kaykan ◽  
Julia S. Kaykan ◽  
Bogdan Ya. Deputat ◽  
Olena V. Shevchuk

2018 ◽  
Vol 916 ◽  
pp. 91-95
Author(s):  
Beh Hoe Guan ◽  
Muhammad Hanif bin Zahari ◽  
Kean Chuan Lee

Spinel ferrite with the chemical formula of Mn0.5Zn0.5LaxFe2-xO4(x= 0.02, 0.04, 0.06, 0.08, 0.10) were prepared by a sol-gel auto-combustion method. The effect of the rare-earth substitution on the microstructural properties of the synthesized powders were investigated through X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while for the magnetic properties, vibrating sample magnetometer (VSM) measurements were made. XRD patterns revealed characteristic peaks corresponding to spinel Mn-Zn ferrite structures with accompanying secondary phases, such as Fe2O3and LaFeO3. The initial addition of La3+into the spinel ferrite system resulted in an initial spike of the lattice parameter and crystallite size before proceeding to decrease as the rare-earth content continues to decrease. FESEM micrographs reveals agglomerated particles with considerable grain size distribution. The magnetic properties, especially the saturation magnetization,Ms, was found to decrease with each increase in La3+substitution. The research findings revealed the critical influence of the La3+substitution towards the overall structural and magnetic properties of the Mn-Zn ferrite samples.


2007 ◽  
Vol 280-283 ◽  
pp. 609-612 ◽  
Author(s):  
Hao Sheng ◽  
Zhen Xing Yue ◽  
Zhi Lun Gui ◽  
Long Tu Li

BiFeO3-PbTiO3 powders were synthesized by a novel sol-gel auto-combustion method. The gels, transformed from the aqueous solutions of metal nitrate and citric acid, undergo a selfpropagatingcombustion process when being ignited and yield voluminous ashes. These ashes are single phase perovskite BiFeO3-PbTiO3 powders. The redox behaviors of the dried gels were studied by DTA-TG technique and IR spectra. The synthesized powders were characterized in terms of XRD, SEM and BET techniques.


2011 ◽  
Vol 412 ◽  
pp. 99-102
Author(s):  
Xi Wei Qi ◽  
He Ji Xu ◽  
Xiao Yan Zhang ◽  
Jian Quan Qi

Crystalline multiferroic BiFeO3 powders were directly synthesized by sol-gel auto-combustion method. The gels, derived from the solutions of 2-methoxyethane, metal nitrate and citric acid, exhibited the self-propagating combustion behaviors at ambient temperature when it is ignited in air. After auto-combustion, the dried gels transformed into crystalline BiFeO3 powders and no further calcination was needed. The nature of auto-combustion was ascribed to heat-induced redox between NH4NO3 and carboxyl group. The TG-DTA was carried out to study the auto-combustion of dried gels. The synthesized powders were characterized by XRD and SEM techniques.


2013 ◽  
Vol 209 ◽  
pp. 102-106 ◽  
Author(s):  
Ganapathi Packiaraj ◽  
Nital R. Panchal ◽  
Rajshree B. Jotania

In the present study, a series of Cu substituted M type Barium hexagonal ferrite BaCuxFe12-xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized using a Sol- gel auto combustion method. The aim of the present work was to investigate the effects of Cu/Fe ratio on the crystallography and dielectric properties. The XRD studies reveal a formation of the single phase BaFe12O19 at the initial level and mixed phase of S, M and Y hexaferrite at the higher level of copper substitution. The dielectric measurements were carried out at room temperature in a frequency range of 20 Hz to 2MHz. the dielectric constant is found to decrease with the increase of frequency for all the compositions.


2007 ◽  
Vol 11 (3) ◽  
pp. 263-267 ◽  
Author(s):  
Min-jian Zhong ◽  
Guo-qing Xu ◽  
Hong-liang Ma ◽  
Jiong Zhou ◽  
Zhong-yue Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document