scholarly journals Chemical vapor deposition-assisted fabrication of a graphene-wrapped MnO/carbon nanofibers membrane as a high-rate and long-life anode for lithium ion batteries

RSC Advances ◽  
2017 ◽  
Vol 7 (80) ◽  
pp. 50973-50980 ◽  
Author(s):  
Juan Wang ◽  
Chao Li ◽  
Zhenyu Yang ◽  
Deliang Chen

Novel MnO/CNFs@G membrane by electrospinning and APCVD; this anode with high specific capacity and longest cycling life is of great interest to high energy thin film or flexible Li-ion battery.

2020 ◽  
Vol 4 (2) ◽  
pp. 72
Author(s):  
Chao-Yu Lee ◽  
Fa-Hsing Yeh ◽  
Ing-Song Yu

In this study, we propose a mass production-able and low-cost method to fabricate the anodes of Li-ion battery. Carbonaceous anodes, integrated with thin amorphous silicon layers by plasma enhanced chemical vapor deposition, can improve the performance of specific capacity and coulombic efficiency for Li-ion battery. Three different thicknesses of a-Si layers (320, 640, and 960 nm), less than 0.1 wt% of anode electrode, were deposited on carbonaceous electrodes at low temperature 200 °C. Around 30 mg of a-Si by plasma enhanced chemical vapor deposition (PECVD) can improve the specific capacity ~42%, and keep coulombic efficiency of the half Li-ion cells higher than 85% after first cycle charge-discharge test. For the thirty cyclic performance and rate capability, capacitance retention can maintain above 96%. The thicker a-Si layers on carbon anodes, the better electrochemical performance of anodes with silicon-carbon composites we get. The traditional carbonaceous electrodes can be deposited a-Si layers easily by plasma enhanced chemical vapor deposition, which is a method with high potential for industrialization.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lipeng Xu ◽  
Fei Zhou ◽  
Bing Liu ◽  
Haobing Zhou ◽  
Qichang Zhang ◽  
...  

Due to the advantages of high specific capacity, various temperatures, and low cost, layered LiNi0.6Co0.2Mn0.2O2 has become one of the potential cathode materials for lithium-ion battery. However, its application was limited by the high cation mixing degree and poor electric conductivity. In this paper, the influences of synthesis methods and modification such surface coating and doping materials on the electrochemical properties such as capacity, cycle stability, rate capability, and impedance of LiNi0.6Co0.2Mn0.2O2 cathode materials are reviewed and discussed. The confronting issues of LiNi0.6Co0.2Mn0.2O2 cathode materials have been pointed out, and the future development of its application is also prospected.


2014 ◽  
Vol 2 (25) ◽  
pp. 9684-9690 ◽  
Author(s):  
Li Chen ◽  
Yongzhi Zhang ◽  
Chaohong Lin ◽  
Wen Yang ◽  
Yan Meng ◽  
...  

Hierarchically porous nitrogen-rich carbon derived from wheat straw presents an impressive specific capacity and ultrahigh rate capability as a Li-ion battery anode.


2015 ◽  
Vol 3 (22) ◽  
pp. 11857-11862 ◽  
Author(s):  
Yuan Liu ◽  
Minqiang Zhu ◽  
Di Chen

A sheet-like MoSe2/C composite-based Li-ion battery exhibits an excellent Li storage performance, including a high specific capacity, good cyclability and high rate capability.


2021 ◽  
Author(s):  
Ziqiang Yu ◽  
Zhiqiang Zhao ◽  
Tingyue Peng

Lithium ion battery (LIB), advantageous in high specific capacity, long cycling life and eco-friendly, has been widely used in many fields. The dwindling reserves, however, limit the further development. Sharing...


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


2020 ◽  
Vol 49 (40) ◽  
pp. 14115-14122
Author(s):  
Mingchen Shi ◽  
Qiang Wang ◽  
Junwei Hao ◽  
Huihua Min ◽  
Hairui You ◽  
...  

Cobalt sulfide (Co4S3) is considered as one of the most promising anode materials for lithium-ion batteries owing to its high specific capacity.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


2011 ◽  
Vol 1313 ◽  
Author(s):  
Indranil Lahiri ◽  
Sung-Woo Oh ◽  
Yang-Kook Sun ◽  
Wonbong Choi

ABSTRACTRechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document