scholarly journals In situ preparation of Ag nanoparticles on silicon wafer as highly sensitive SERS substrate

RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 2887-2891 ◽  
Author(s):  
Xinglong Tu ◽  
Zheng Li ◽  
Jing Lu ◽  
Yanpeng Zhang ◽  
Guilin Yin ◽  
...  

An intensive surface enhanced Raman scattering (SERS) effect is realized by ordered Ag nanoparticles (NPs) in situ grown on silicon wafer directly using (3-aminopropyl) trimethoxysilane (APS) as both the surface modifier and reducing agent.

The Analyst ◽  
2017 ◽  
Vol 142 (24) ◽  
pp. 4756-4764 ◽  
Author(s):  
Yi Li ◽  
Rui Lu ◽  
Jinyou Shen ◽  
Weiqing Han ◽  
Xiuyun Sun ◽  
...  

A flexible 3D hybrid PC/Ag surface-enhanced Raman scattering (SERS) substrate was fabricated through the combination of electrospinning and in situ chemical reduction.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012084
Author(s):  
Hammad R. Humud ◽  
Fatimah Jumaah Moaen

Abstract The current study examines recent advancements in surface-enhanced Raman scattering (SERS), a technique that employs flexible surfaces as an active substrate, this surfaces consist from two-dimensional thermo-plasmonic grating. With 53 nm Au layer (was deposited on the 2D grating structure of the PDMS by the PVD method). The explosive wire technique was used to preparing Ag nanoparticles that were used for the purpose of SERS. The effect of the plasmonic nanostructures on the absorption spectra and Surface - Enhanced Raman Scattering (SERS) activities was examined. Rhodamine 6G dye was used as a probe molecule. X-Ray diffraction (XRD) was used to examine the structural characteristics of the nanoparticles. The morphology was assessed using Field Emission Scanning Electron Microscopy(FESEM). A twin beam UV-Vis Spectrophotometer was used to measure the absorption of the combined Rh6G dye (concentration 1×10“–6M) with the nanostructures. a Sunshine Raman microscope system and a 50mm objective lens, used for investigating the Raman spectra of the Rh6G combined with nanostructures. The results showed that the enhancement factor (EF) for SERS of R6G (1×M) reached to (2.2×10 3) When using Ag nanoparticles and (0.08 × 103) when R6G deposited directly on the flexible substrates without nanostructures at the wave number (1650 cm−1), we produced a recyclable, homogeneous, and highly sensitive SERS substrate with dependable reproducibility. For the SERS substrate, a surface made up of two-dimensional (2D) flexible grating substrates was chosen to provide multiple modalities in electrical and medicinal applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chao Zhang ◽  
Zhaoxiang Li ◽  
Si Qiu ◽  
Weixi Lu ◽  
Mingrui Shao ◽  
...  

Abstract Regulation of hot spots exhibits excellent potential in many applications including nanolasers, energy harvesting, sensing, and subwavelength imaging. Here, hat-shaped hierarchical nanostructures with different space curvatures have been proposed to enhance hot spots for facilitating surface-enhanced Raman scattering (SERS) and plasmon-driven catalysis applications. These novel nanostructures comprise two layers of metal nanoparticles separated by hat-shaped MoS2 films. The fabrication of this hybrid structure is based on the thermal annealing and thermal evaporation of self-assembled polystyrene spheres, which are convenient to control the metal particle size and the curvature of hat-shaped nanostructures. Based on the narrow gaps produced by the MoS2 films and the curvature of space, the constructed platform exhibits superior SERS capability and achieves ultrasensitive detection for toxic molecules. Furthermore, the surface catalytic conversion of p-nitrothiophenol (PNTP) to p, p′-dimercaptobenzene (DMAB) was in situ monitored by the SERS substrate. The mechanism governing this regulation of hot spots is also investigated via theoretical simulations.


Nanoscale ◽  
2014 ◽  
Vol 6 (13) ◽  
pp. 7232-7236 ◽  
Author(s):  
Yi-Chung Wang ◽  
Joseph S. DuChene ◽  
Fengwei Huo ◽  
Wei David Wei

The widespread implementation of surface enhanced Raman scattering (SERS) techniques for chemical and biological detection requires an inexpensive, yet robust SERS substrate with high sensitivity and reproducibility.


RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7015-7021 ◽  
Author(s):  
Xuan-Hung Pham ◽  
Minwoo Lee ◽  
Seongbo Shim ◽  
Sinyoung Jeong ◽  
Hyung-Mo Kim ◽  
...  

We developed highly sensitive surface-enhanced Raman scattering (SERS) probes based on SiO2@Au@Ag nanoparticles (NPs) using the Ag growth onto Au NP seeds method.


2015 ◽  
Vol 3 (25) ◽  
pp. 13556-13562 ◽  
Author(s):  
Wei Song ◽  
Wei Ji ◽  
Sanpon Vantasin ◽  
Ichiro Tanabe ◽  
Bing Zhao ◽  
...  

We have described a simple electrospinning technique combined with a calcination process to fabricate ZnO nanofibers deposited on a silver foil surface. These can be used as a photocatalyst and a SERS substrate for monitoring the catalytic degradation process of organic pollutants.


2018 ◽  
Vol 6 (46) ◽  
pp. 12547-12554 ◽  
Author(s):  
Di Wu ◽  
Jianli Chen ◽  
Yaner Ruan ◽  
Kai Sun ◽  
Kehua Zhang ◽  
...  

A MoS2 QD/rGO nanocomposite is synthesized as a novel highly sensitive and stable surface SERS substrate for dye molecular detection.


Sign in / Sign up

Export Citation Format

Share Document