scholarly journals Structural characterization of framework–gas interactions in the metal–organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction

2017 ◽  
Vol 8 (6) ◽  
pp. 4387-4398 ◽  
Author(s):  
Miguel I. Gonzalez ◽  
Jarad A. Mason ◽  
Eric D. Bloch ◽  
Simon J. Teat ◽  
Kevin J. Gagnon ◽  
...  

In situ single-crystal X-ray diffraction experiments enable the direct observation of weak metal–gas interactions in a metal–organic framework.

Author(s):  
Naomi Biggins ◽  
Michael Ziebel ◽  
Miguel Gonzalez ◽  
Jeffrey R. Long

<div><p>Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure-performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe<sub>2</sub>(bdp)<sub>3</sub> (bdp<sup>2−</sup> = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub>∙<i>y</i>THF<sub> </sub>(A = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na<sub>0.5</sub>Fe<sub>2</sub>(bdp)<sub>3 </sub>and Li<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation­–π interactions. Hydrogen adsorption data indicate that these cation-framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe<sub>2</sub>(bdp)<sub>3</sub>. In contrast, Mg<sub>0.85</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> exhibits enhanced H<sub>2</sub> affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H<sub>2</sub> interactions.</p></div>


2020 ◽  
Author(s):  
Naomi Biggins ◽  
Michael Ziebel ◽  
Miguel Gonzalez ◽  
Jeffrey R. Long

<div><p>Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure-performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe<sub>2</sub>(bdp)<sub>3</sub> (bdp<sup>2−</sup> = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub>∙<i>y</i>THF<sub> </sub>(A = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na<sub>0.5</sub>Fe<sub>2</sub>(bdp)<sub>3 </sub>and Li<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation­–π interactions. Hydrogen adsorption data indicate that these cation-framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe<sub>2</sub>(bdp)<sub>3</sub>. In contrast, Mg<sub>0.85</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> exhibits enhanced H<sub>2</sub> affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H<sub>2</sub> interactions.</p></div>


2020 ◽  
Vol 11 (34) ◽  
pp. 9173-9180 ◽  
Author(s):  
Naomi Biggins ◽  
Michael E. Ziebel ◽  
Miguel I. Gonzalez ◽  
Jeffrey R. Long

Single-crystal X-ray diffraction reveals structural influences on gas adsorption properties in anionic metal–organic frameworks.


Langmuir ◽  
2009 ◽  
Vol 25 (6) ◽  
pp. 3618-3626 ◽  
Author(s):  
Stuart R. Miller ◽  
Paul A. Wright ◽  
Thomas Devic ◽  
Christian Serre ◽  
Gérard Férey ◽  
...  

2015 ◽  
Vol 17 (26) ◽  
pp. 17471-17479 ◽  
Author(s):  
Volodymyr Bon ◽  
Nicole Klein ◽  
Irena Senkovska ◽  
Andreas Heerwig ◽  
Jürgen Getzschmann ◽  
...  

The “gate opening” mechanism in flexible MOF Ni2(2,6-ndc)2dabco was elucidated in detail.


2013 ◽  
Vol 275-277 ◽  
pp. 2367-2370
Author(s):  
Qing Yu Ma ◽  
Rui Fang Guan ◽  
Guo Zhong Li ◽  
Deng Xu Wang

A novel metal-organic framework, MnCl2(BIPS)2•2CH3OH•2H2O (1) were synthesized from MnCl2 and a tetrahedral silicon-cored ligand, Me2Si(p-C6H4-imdazol-1-yl)2 (BIPS) under the slow diffusion method. The structure was determined by single-crystal X-ray diffraction. Complex 1 is a 2D sheet structure constructed from 1D chains with 34-atom metallamacrocycles.


CrystEngComm ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 2097-2102 ◽  
Author(s):  
Julia G. Knapp ◽  
Xuan Zhang ◽  
Tatyana Elkin ◽  
Laura E. Wolfsberg ◽  
Sylvia L. Hanna ◽  
...  

The zirconium MOF NU-1000 was post-synthetically modified through solvothermal deposition to include the uranyl ion and characterized via single-crystal X-ray diffraction; photo-oxidation was also performed.


Sign in / Sign up

Export Citation Format

Share Document