Hierarchically porous carbons from an emulsion-templated, urea-based deep eutectic

2017 ◽  
Vol 5 (31) ◽  
pp. 16376-16385 ◽  
Author(s):  
Katya Kapilov-Buchman ◽  
Lotan Portal ◽  
Youjia Zhang ◽  
Nina Fechler ◽  
Markus Antonietti ◽  
...  

A hierarchically porous carbon monolith (97% porosity) was generated through the carbonization of an emulsion-templated monolith formed from a chain extended, urea-based, deep-eutectic polymer. The highly interconnected micrometer-scale porous structure had a high specific surface area (812 m2 g−1, largely microporous) and exhibited promising results for aqueous solution sorption applications.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 346 ◽  
Author(s):  
Weimin Zhao ◽  
Jingjing Wen ◽  
Yanming Zhao ◽  
Zhifeng Wang ◽  
Yaru Shi ◽  
...  

As lithium-ion battery (LIB) anode materials, porous carbons with high specific surface area are highly required because they can well accommodate huge volume expansion/contraction during cycling. In this work, hierarchically porous carbon (HPC) with high specific surface area (~1714.83 m2 g−1) is synthesized from biomass reed flowers. The material presents good cycling stability as an LIB anode, delivering an excellent reversible capacity of 581.2 mAh g−1 after cycling for 100 cycles at a current density of 100 mA g−1, and still remains a reversible capacity of 298.5 mAh g−1 after cycling for 1000 cycles even at 1000 mA g−1. The good electrochemical performance can be ascribed to the high specific surface area of the HPC network, which provides rich and fast paths for electron and ion transfer and provides large contact area and mutual interactions between the electrolyte and active materials. The work proposes a new route for the preparation of low cost carbon-based anodes and may promote the development of other porous carbon materials derived from various biomass carbon sources.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


2019 ◽  
Vol 55 (100) ◽  
pp. 15117-15120 ◽  
Author(s):  
Hong Wang ◽  
Wei Li ◽  
Zhiwei Zhu ◽  
Yijuan Wang ◽  
Pan Li ◽  
...  

An N-doped bio-carbon catalyst with a hierarchical interconnected macro/meso-porous structure and high specific surface area exhibited significantly enhanced electrocatalytic activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Renjie Zhou ◽  
Gui Chen ◽  
Yuejun Ouyang ◽  
Hairui Ni ◽  
Nonglin Zhou ◽  
...  

Using MOF-5 as a template, the porous carbon (MDPC-600) possessing high specific surface area was obtained after carbonization and acid washing. After MDPC-600 was loaded with Cu ions, the catalyst Cu/MDPC-600 was acquired by heat treatment under nitrogen atmosphere. The catalyst was characterized by X-ray powder diffraction (XRD), N2 physical adsorption (BET), field emission electron microscope (SEM), energy spectrum, and transmission electron microscope (TEM). The results show that the Cu/MDPC-600 catalyst prepared by using MOF-5 as the template has a very high specific surface area, and Cu is uniformly supported on the carrier. The catalytic hydrogen peroxide oxidation reaction of phenol hydroxylation was investigated and exhibits better catalytic activity and stability in the phenol hydroxylation reaction. The catalytic effect was best when the reaction temperature was 80°C, the reaction time was 2 h, and the amount of catalyst was 0.05 g. The conversion rate of phenol was 47.6%; the yield and selectivity of catechol were 37.8% and 79.4%, respectively. The activity of the catalyst changes little after three cycles of use.


2012 ◽  
Vol 518-523 ◽  
pp. 1753-1756 ◽  
Author(s):  
Gang Liu ◽  
Quan Deng ◽  
Yong Yang ◽  
Hui Min Wang ◽  
Guo Zhong Wang

We have succeeded in preparing micro/nanostructured α-Fe2O3 spheres (MNFSs). The resulted MNFSs have an average diameter of about 5 µm, and are constructed by subunits of interlinked and elongated particles with a diameter of 20~60 nm. MNFSs show an obviously structural enhanced Cr(VI) removal capacity (5.88 mg/g) compared with nanoscaled (0.81 mg/g) and microscaled α-Fe2O3 (0.1 mg/g) due to its high specific surface area together with the special porous structure. Moreover, MNFSs show good availability of reusing to remove Cr(VI) ions.


Sign in / Sign up

Export Citation Format

Share Document