multilayer adsorption
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 40)

H-INDEX

37
(FIVE YEARS 5)

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 266
Author(s):  
Philipp Riedl ◽  
Maria Schricker ◽  
Tilo Pompe

Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with collagen fibrils, affecting many functional properties such as mechanics and binding of growth factors. For in vitro application, the functions of sulfated biopolymer decorations of fibrillar collagen materials are hardly understood. Herein, we report new results on the stiffness dependence of 3D collagen I networks by surface functionalization of the network fibrils with synthetic sulfonated polymers, namely, poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS). A non-monotonic stiffness dependence on the amount of adsorbed polymer was found for both polymers. The stiffness dependence correlated to a transition from mono- to multilayer adsorption of sulfonated polymers on the fibrils, which was most prominent for PVS. PVS mono- and multilayers caused a network stiffness change by a factor of 0.3 and 2, respectively. A charge-dependent weakening of intrafibrillar salt bridges by the adsorbed sulfonated polymers leading to fibrillar softening is discussed as the mechanism for the stiffness decrease in the monolayer regime. In contrast, multilayer adsorption can be assumed to induce interfibrillar bridging and an increase in network stiffness. Our in vitro results have a strong implication on in vivo characteristics of fibrillar collagen I, as sulfated glycosaminoglycans frequently attach to collagen fibrils in various tissues, calling for an up to now overlooked impact on matrix and tendon mechanics.


Author(s):  
Nader I. Namazi

The purpose of this research was to formulate insulin-loaded polycaprolactone (PCL) nanoparticles and evaluate structural stability of the protein using fluorescence spectroscopy. The size and morphology of the nanoparticles were characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Fluorescence emission data revealed that insulin is most stable with multilayer adsorption at pH close to its isoelectric point (IEP). The obtained particle size ranged from 130-140 nm+22 (SD). The loading amount of insulin onto the PCL nanoparticles was low at pH 7.4 and relatively high at pH 5.3. The adsorption phenomenon of protein onto hydrophobic nanoparticles provides a promising noninvasive carrier system for insulin.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tadele Assefa Aragaw ◽  
Fekadu Mazengiaw Bogale

Dyes, especially azo dyes contained in wastewaters released from textile, pigment, and leather industries, are entering into natural waterbodies. This results in environmental deterioration and serious health damages (for example carcinogenicity and mutagenesis) through food chains. Physiochemical, membrane processes, electrochemical technology, advanced oxidation processes, reverse osmosis, ion exchange, electrodialysis, electrolysis, and adsorption techniques are commonly used conventional treatment technologies. However, the limitations of most of these methods include the generation of toxic sludge, high operational and maintenance costs. Thus, technological advancements are in use to remediate dyes from effluents. Adsorption using the nonconventional biomass-based sorbents is the greatest attractive alternatives because of their low cost, sustainability, availability, and eco-friendly. We present and reviewed up-to-date publications on biomass-based sorbents used for dye removal. Conceptualization and synthesizing their state-of-the-art knowledge on their characteristics, experimental conditions used were also discussed. The merits and limitations of various biosorbents were also reflected. The maximum dye adsorption capacities of various biosorbents were reviewed and synthesized in the order of the biomass type (algae, agricultural, fungal, bacterial, activated carbon, yeast, and others). Surface chemistry, pH, initial dye concentration, temperature, contact time, and adsorbent dose as well as the ways of the preparations of materials affect the biosorption process. Based on the average dye adsorption capacity, those sorbents were arranged and prioritized. The best fit of the adsorption isotherms (for example Freundlich and Langmuir models) and basic operating parameters on the removal dyes were retrieved. Which biomass-based adsorbents have greater potential for dye removal based on their uptake nature, cost-effectiveness, bulk availability, and mono to multilayer adsorption behavior was discussed. The basic limitations including the desorption cycles of biomass-based adsorbent preparation and operation for the implementation of this technology were forwarded.


2021 ◽  
Author(s):  
Kavya Suresh ◽  
Muhammad Amirul Islam ◽  
Masoud Rastgar ◽  
Brian A. Fleck ◽  
Mohtada Sadrzadeh

Abstract The sustainable development of oil-gas and petrochemical industries necessitates the development of cost-effective and eco-friendly technologies to treat mass-produced oily wastewater discharge from these industries. This study applied a simple radical polymerization to enhance the oil adsorption efficiency of agricultural waste biomass wheat straw (WS) by grafting biocompatible PMMA. Diesel oil adsorption from oil-in-water emulsion using the PMMA grafted WS was thoroughly studied for the first time in the quest of developing an economical and eco-friendly adsorbent for the adsorptive treatment of oily wastewater. Initially, the pristine WS was subjected to alkaline hydrogen peroxide pre-treatment to remove the materials that can lead to secondary pollution during operation, to expose the reactive cellulose surface sites that can enhance grafting efficiency, and to break the inner interconnected tubular pore channel walls; otherwise, the tubular pore channels will not be accessible to viscous oil due to limited capillary penetration. The success of pre-treatment of pristine WS and the subsequent PMMA grafting were evaluated by SEM morphology, BET analysis, EDX and XPS elemental analysis, FTIR, and contact angle measurements. SEM images indicated that the inner interconnected tubular pore channels of WS are exposed significantly upon alkaline hydrogen peroxide pretreatment. PMMA grafting substantially improved oil adhesivity, as evident from the 0º oil contact angle for WS-g-PMMA film. Oil absorptivity was thoroughly evaluated by batch oil adsorption study using variable adsorbent dosages and oil emulsion concentrations. The WS-g-PMMA exhibited explicitly higher adsorption capacity (ca. 1129 mg/g) compared to that of the pristine (ca. 346 mg/g) and pretreated (ca. 741 mg/g) due to high accessibility to exposed inner interconnected tubular pore channels and strong hydrophobic interactions between the WS-g-PMMA surface and oil droplets. Langmuir and Freundlich adsorption isotherms were applied to evaluate the adsorption mechanism. The experimental data fit well with the Freundlich isotherm, clearly indicating the heterogeneity of adsorption sites, as well as multilayer adsorption of oil. The experimental adsorption data fit well with the pseudo-second-order rate equation with R2 as high as 0.999, which confirmed the multilayer adsorption of oil. The high oil adsorption capacity of the WS-g-PMMA makes it a very promising material for oily wastewater treatment. This will simultaneously resolve issues with the treatment of oily wastewater and facilitate the recycling of abundant quantities of waste WS. This study serves as a reference for analyzing the suitability of wheat straw for treating extremely challenging waste streams, such as SAGD produced water containing BTEX and PAHs that are also hydrophobic like diesel oil.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5622
Author(s):  
Andrzej Patrykiejew

A simple lattice model has been used to study the formation of multilayer films by fluids with orientation-dependent interactions on solid surfaces. The particles, composed of two halves (A and B) were allowed to take on one of six different orientations. The interaction between a pair of differently oriented neighboring particles was assumed to depend on the degrees to which their A and B parts overlap. Here, we have assumed that the AA interaction was strongly attractive, the AB interaction was set to zero, while the BB interaction was varied between 0 and −1.0. The ground state properties of the model have been determined for the systems being in contact with non-selective and selective walls over the entire range of BB interaction energies between 0 and −1.0. It has been demonstrated that the structure of multilayer films depends on the strengths of surface potential felt by differently oriented particles and the interaction between the B halves of fluid particles. Finite temperature behavior has been studied by Monte Carlo simulation methods. It has been shown that the bulk phase phase diagram is qualitatively independent of the BB interaction energy, and has the swan neck shape, since the high stability of the dense ordered phase suppresses the possibility of the formation of disordered liquid-like phase. Only one class of non-uniform systems with the BB interaction set to zero has been considered. The results have been found to be consistent with the predictions stemming form the ground state considerations. In particular, we have found that a complete wetting occurs at any temperature, down to zero. Furthermore, the sequences of layering transitions, and the structure of multilayer films, have been found to be the same as observed in the ground state.


2021 ◽  
Author(s):  
Zizhong Liu ◽  
Hamid Emami-Meybodi

Abstract This paper presents a continuum-scale diffusion-based model informed by pore-scale data for gas transport in organic nanoporous media. A mass transfer and adsorption model is developed by considering multiple transport and storage mechanisms, including bulk diffusion and Knudsen diffusion for free phase, surface diffusion for sorbed phase, and multilayer adsorption. The continuum-scale diffusion-based governing equation is developed solely based on free phase concentration for the overall mass conservation of free and sorbed phases, carrying a newly-defined effective diffusion coefficient and a capacity factor to account for multilayer adsorption. Diffusion of free and sorbed phases is coupled through the pore-scale simplified local density method based on the modified Peng-Robinson equation of state for confinement effects. The model is first utilized to analyze pore-scale adsorption data from the krypton (Kr) gas adsorption experiment on graphite. Then we implement the model to conduct sensitivity analysis for the effects of pore size on gas transport for Kr-graphite and methane-coal systems. The model is finally used to study Kr diffusion profiles through a coal matrix obtained through X-ray micro-CT imaging. The results show that the sorbed phase occupies most of the pore space in organic nanoporous media due to multilayer adsorption, and surface diffusion contributes significantly to the total mass flux. Therefore, neglecting the volume of sorbed phase and surface diffusion in organic nanoporous rocks may result in considerable errors. Furthermore, the results reveal that implementing a Langmuir-based model may be erroneous for an organic-rich reservoir with nanopores during the early depletion period when the reservoir pressure is high.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2511
Author(s):  
Corazón G. Morales-Amaya ◽  
María T. Alarcón-Herrera ◽  
Pablo D. Astudillo-Sánchez ◽  
Samuel A. Lozano-Morales ◽  
Liliana Licea-Jiménez ◽  
...  

Arsenic in water is currently a global concern due to the long-term exposure that could affect human health. In this study, magnetic nanoparticles (MNPs), CoFe2O4, and MnFe2O4 were successfully synthesized and applied to remove arsenic (As) from water. The MNPs were characterized using different techniques, such as scanning electron microscope (SEM), Brunauer–Emmet–Teller (BET), and photoelectron spectroscopy (XPS). The nanoscale size and the specific surface area achieved a fast, selective, and high As adsorption capacity. MNPs have a mesoporous structure with a mean pore diameter of 5 nm and a mean particle size of 30 nm. The adsorption capacity of these MNPs was determined through kinetic and equilibrium experiments, multilayer adsorption that obeyed the Freundlich model equation was observed, and the maximum adsorption capacities reached were 250 mg/g for CoFe2O4 and 230 mg/g for MnFe2O4. Furthermore, MNPs characteristics like regeneration and reuse, several pH tolerances, non-ion interference, and effective As removal from groundwater samples confirms the nanomaterials’ potential for future applications in water treatment systems combined with magnetic separation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jayachandran Sheeja ◽  
Krishnan Sampath ◽  
Ramasamy Kesavasamy

Hedyotis umbellate activated carbon (HUAC) was prepared by chemical and thermal activation. The adsorption behavior of Hedyotis umbellate activated carbon in aqueous basic green 4 (BG4) and acid fuchsin (AF) was investigated and characterized by UV-vis, FTIR, and FESEM. The possible mechanism of the adsorption of BG4 and AF dyes on the HUAC surface was framed. The influence of various adsorption control parameters like the initial dye concentration, pH, adsorbent dose, contact time, and temperature was studied. The data confirmed excellent BG4 removal of 97.94% at pH 10 and AF removal of 76.7% at pH 4. The experimental data were fitted using Langmuir, Freundlich, and Temkin isotherms to examine the adsorption mechanism. The adsorption data revealed monolayer adsorption of BG4 with the maximum capacity of 102.38 mg/g and multilayer adsorption of AF with the capacity of 139.33 mg/g. The kinetic data for different initial dye concentrations were computed using pseudofirst order, pseudosecond order, and intraparticle diffusion models. Thermodynamic parameters like Gibbs free energy change ∆ G 0 , enthalpy change ∆ H 0 , and entropy change ∆ S 0 were evaluated. From the values obtained, the negative values of ∆ G 0 and ∆ H 0 indicate that the adsorption of BG4 and AF by HUAC is spontaneous and exothermic.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Salvatore Lombardo ◽  
Bernard Cathala ◽  
Ana Villares

Abstract In this work, we studied the multilayer adsorption of cellulose nanocrystals and cellulose nanofibers with other polysaccharides such as xyloglucan and chitosan. We showed that the specific interactions between these biopolymers can be exploited to prepare three-dimensional functional materials. Quartz crystal microbalance studies showed that both biopolymers were adsorbed irreversibly on the nanocellulose surfaces. In aqueous media, the maximum amount of adsorbed polymer was higher for the smaller and more crystalline cellulose nanocrystals, compared to cellulose nanofibers. For both nanocelluloses employed, the amount of xyloglucan of the first bilayer was larger than the amount of chitosan adsorbed. Ellipsometry showed that both xyloglucan and chitosan were adsorbed on nanocellulose surfaces. However, at the second layer no mass change was detected by quartz crystal microbalance when xyloglucan was added, while for addition of successive layers of chitosan a decrease of frequency was detected. The water uptake of multilayers was higher for cellulose nanocrystals than for nanofibers, which was ascribed the presence of voids in the nanocrystal layer. Finally, we demonstrated that multilayer adsorption of these biopolymers can be performed on calcium carbonate sacrificial templates, which can then be removed to yield hollow polysaccharide microcapsules.


Sign in / Sign up

Export Citation Format

Share Document