scholarly journals The effect of oxygen on the efficiency of planar p–i–n metal halide perovskite solar cells with a PEDOT:PSS hole transport layer

2018 ◽  
Vol 6 (16) ◽  
pp. 6882-6890 ◽  
Author(s):  
Bardo J. Bruijnaers ◽  
Eric Schiepers ◽  
Christ H. L. Weijtens ◽  
Stefan C. J. Meskers ◽  
Martijn M. Wienk ◽  
...  

Thermal annealing in air of p–i–n metal halide perovskite solar cells processed on PEDOT:PSS restores the work function of this hole transport layer, resulting in power conversion efficiency.

2021 ◽  
Author(s):  
Dong Ding ◽  
Luis Lanzetta ◽  
Xinxing Liang ◽  
Ganghong Min ◽  
Marcin Giza ◽  
...  

Introducing a polymethylmethacrylate (PMMA) layer at the (PEA)0.2(FA)0.8SnI3 perovskite/hole transport layer interface leads to a remarkable improvement in the photogenerated current density and fill factor, resulting in an increase in the power conversion efficiency from 6.5% to 10%.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4417-4424
Author(s):  
Ahmed Esmail Shalan ◽  
Mustafa K. A. Mohammed ◽  
Nagaraj Govindan

In recent times, perovskite solar cells (PSCs) have been of wide interest in solar energy research, which has ushered in a new era for photovoltaic power sources through the incredible enhancement in their power conversion efficiency (PCE).


2017 ◽  
Vol 5 (39) ◽  
pp. 10280-10287 ◽  
Author(s):  
Cong Chen ◽  
Guang Yang ◽  
Junjie Ma ◽  
Xiaolu Zheng ◽  
Zhiliang Chen ◽  
...  

We showed that perovskite solar cells employing Li-treated NiOxas a hole transport layer demonstrated excellent photovoltaic performance, and obtained a power conversion efficiency of up to 18.03%. In addition, the device possessed good long-term stability.


2018 ◽  
Vol 5 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Jiaqi Zhang ◽  
Maurizio Morbidoni ◽  
Keke Huang ◽  
Shouhua Feng ◽  
Martyn A. McLachlan

The aqueous processed ZnO/PCBM modified ETLs enable low-temperature processed, thermally stable and efficient perovskite solar cells showing negligible hysteresis.


2014 ◽  
Vol 2 (32) ◽  
pp. 12754-12760 ◽  
Author(s):  
Sudam Chavhan ◽  
Oscar Miguel ◽  
Hans-Jurgen Grande ◽  
Victoria Gonzalez-Pedro ◽  
Rafael S. Sánchez ◽  
...  

The viability of using solution-processed CuSCN films as inorganic hole selective contacts in perovskite solar cells is demonstrated, by reaching a power conversion efficiency of 6.4% in planar heterojunction-based devices.


2020 ◽  
Vol 8 (7) ◽  
pp. 2419-2424
Author(s):  
Sergey Tsarev ◽  
Olga A. Kraevaya ◽  
Sergey Yu. Luchkin ◽  
Keith J. Stevenson ◽  
Pavel A. Troshin

In this study, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) is presented as an additive to modify a polytriarylamine-based hole transport layer (HTL) for perovskite solar cells assembled in a regular n–i–p configuration.


Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1352-1358 ◽  
Author(s):  
Zhenyi Ni ◽  
Chunxiong Bao ◽  
Ye Liu ◽  
Qi Jiang ◽  
Wu-Qiang Wu ◽  
...  

We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Di Zhou ◽  
Tiantian Zhou ◽  
Yu Tian ◽  
Xiaolong Zhu ◽  
Yafang Tu

A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3) materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.


Sign in / Sign up

Export Citation Format

Share Document