Electronic structures and optical properties of arsenene and antimonene under strain and an electric field

2018 ◽  
Vol 6 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Huabing Shu ◽  
Yunhai Li ◽  
Xianghong Niu ◽  
JiYuan Guo

The optical absorption spectra of hexagonal arsenene (β-As) and antimonene (β-Sb).

2017 ◽  
Vol 19 (16) ◽  
pp. 10644-10650 ◽  
Author(s):  
Huabing Shu ◽  
Yilong Tong ◽  
Jiyuan Guo

The variable band-gap of the Si/As heterostructure (left) and optical absorption spectra for AA-stacking under a vertical electric field (right).


Nanoscale ◽  
2018 ◽  
Vol 10 (44) ◽  
pp. 20821-20827 ◽  
Author(s):  
Chongqi Yu ◽  
Romain Schira ◽  
Harald Brune ◽  
Bernd von Issendorff ◽  
Franck Rabilloud ◽  
...  

We present optical absorption spectra from the ultraviolet to the visible for size selected neutral Agn clusters (n = 5–120) embedded in solid Ne.


2016 ◽  
Vol 675-676 ◽  
pp. 322-326
Author(s):  
Narong Sangwaranatee ◽  
Jakrapong Kaewkhao ◽  
Yotsakit Ruangtaweep

In this work, effect of Li2O and Na2O on bismuth borate glasses have been investigated. The glass samples were prepared in composition 44B2O3 : 50Bi2O3 : 5Li2O : 1A2O3 and 44B2O3 : 50Bi2O3 : 5Na2O3 : 1A2O3 (where A2O3= Sm2O3 and Dy2O3).Glasses were prepared using the melt-quenching technique at 1,100 oc under normal atmosphere. The result found that, the density and molar volume of lithium bismuth borate glasses are less than sodium bismuth borate glasses both in Sm2O3 and Dy2O3. In addition, the optical absorption spectra and luminescence of lithium bismuth borate glasses are higher than sodium bismuth borate glasses both in Sm2O3 and Dy2O3.


2017 ◽  
Vol 31 (13) ◽  
pp. 1750101 ◽  
Author(s):  
Ibrahim Bulus ◽  
S. A. Dalhatu ◽  
R. Hussin ◽  
W. N. Wan Shamsuri ◽  
Y. A. Yamusa

Achieving outstanding physical and optical properties of borosulfophosphate glasses via controlled doping of rare earth ions is the key issue in the fabrication of new and highly-efficient glass material for diverse optical applications. Thus, the effect of replacing P2O5 by Dy2O3 on the physical and optical properties of Dy[Formula: see text]-doped lithium-borosulfophosphate glasses with chemical composition of 15Li2O–30B2O3–15SO3–[Formula: see text]P2O5–[Formula: see text]Dy2O3 (where 0.0 mol.% [Formula: see text] mol.%) has been investigated. The glass samples were synthesized from high-purity raw materials via convectional melt-quenching technique and characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), density and UV–vis–NIR absorption measurements. The amorphous nature of the prepared glass samples was confirmed by XRD patterns whereas the EDX spectrum depicts elemental traces of O, C, B, S, P and Dy. The physical parameters such as density, refractive index, molar volume, polaron radius and field strength were found to vary nonlinearly with increasing Dy2O3 concentration. UV–vis–NIR absorption spectra revealed seven absorption bands with most dominant peak at 1269 nm (6H[Formula: see text]F[Formula: see text]H[Formula: see text]). From the optical absorption spectra, the optical bandgap and Urbach’s energy have been determined and are related with the structural changes occurring in these glasses with increase in Dy2O3 content. Meanwhile, the bonding parameters ([Formula: see text]) evaluated from the optical absorption spectra were found to be ionic in nature. The superior features exhibited by the current glasses nominate them as potential candidate for nonlinear optical applications.


2010 ◽  
Vol 428-429 ◽  
pp. 317-321
Author(s):  
Bao Gai Zhai ◽  
Yuan Ming Huang

The electronic transitions in a classical banana-shaped liquid crystal 1,3-phenylene-bis [4-(4-octylphenylimino) methyl] benzoate have been investigated by measuring its optical absorption spectra in dilute solutions of ethyl alcohol and by calculating its electronic structures with extended Hückel tight binding program. The banana-shaped compound shows strong absorptions at 240, 280, 350 nm, respectively. On the basis of the calculated electronic structures, the three strong absorptions can be assigned to the *, n*, and nn* electronic transitions in this banana-shaped compound.


1998 ◽  
Vol 53 (8) ◽  
pp. 927-932 ◽  
Author(s):  
G. A. Mousdis ◽  
G. C. Papavassiliou ◽  
A. Terzis ◽  
C. P. Raptopoulou

Abstract The preparation, crystal structures and optical absorption spectra of [H3N(CH2)6NH3]BiX5 (X= I, Cl) and [H3N(CH2)6NH3]SbX5 (X =I, Br) are reported. The anions of the compounds consist of MX6-octahedra (M =Bi, Sb) sharing cisvertices in one-dimensional zig-zag chains. Because of their one-dimensional character, a blue shift of the excitonic absorption bands, in com parison to those of higher dim ensionality systems (MX3), is observed.


Sign in / Sign up

Export Citation Format

Share Document