scholarly journals On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores

2019 ◽  
Vol 21 (7) ◽  
pp. 3721-3733 ◽  
Author(s):  
Jochem H. Smit ◽  
Jasper H. M. van der Velde ◽  
Jingyi Huang ◽  
Vanessa Trauschke ◽  
Sarah S. Henrikus ◽  
...  

How photostabilizer molecules influence the photophysical properties of various organic fluorophores used for single-molecule and super-resolution imaging.


2018 ◽  
Author(s):  
Jochem H. Smit ◽  
Jasper H. M. van der Velde ◽  
Jingyi Huang ◽  
Vanessa Trauschke ◽  
Sarah S. Henrikus ◽  
...  

AbstractWhile buffer cocktails remain the gold-standard for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with ‘self-healing’ or even functional properties such as photoswitching. In this contribution, we evaluated various combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other rather than being additive or even synergistic. Often intramolecular processes dominate the photophysical situation for combinations of covalently-linked and solution-based photostabilizers and photoswitching agents. In this context we identified a new function of intramolecular photostabilizers, i.e., protection of fluorophores from reversible off-switching events caused by solution-additives, which were previously misinterpreted as photobleaching. Our studies also provide practical guidance for usage of photostabilizer-dye conjugates for STORM-type super-resolution microscopy permitting the exploitation of their improved photophysics for increased spatio-temporal resolution. Finally, we provide evidence that the biochemical environment, e.g., proximity of aromatic amino-acids such as tryptophan, reduces the photostabilization efficiency of commonly used buffer cocktails. Not only have our results important implications for a deeper mechanistic understanding of self-healing dyes, but they will provide a general framework to select label positions for optimal and reproducible photostability or photoswitching kinetics.



2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Jasper H. M. van der Velde ◽  
Jens Oelerich ◽  
Jingyi Huang ◽  
Jochem H. Smit ◽  
Atieh Aminian Jazi ◽  
...  

Abstract Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with ‘self-healing’ properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer–dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.



2014 ◽  
Vol 106 (2) ◽  
pp. 201a
Author(s):  
Anthony M. Fernandez ◽  
Fabien F. Pinaud


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246138
Author(s):  
Hanieh Mazloom-Farsibaf ◽  
Farzin Farzam ◽  
Mohamadreza Fazel ◽  
Michael J. Wester ◽  
Marjolein B. M. Meddens ◽  
...  

Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide ‘lifeact’. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.



2013 ◽  
Vol 80 (3) ◽  
pp. 357-360 ◽  
Author(s):  
I. V. Stanishevsky ◽  
K. N. Solovyov ◽  
S. M. Arabei ◽  
V. A. Chernyavsky


Author(s):  
Luis A. Alemán-Castañeda ◽  
Valentina Curcio ◽  
Thomas G. Brown ◽  
Sophie Brasselet ◽  
Miguel A. Alonso


2011 ◽  
Vol 100 (3) ◽  
pp. 349a
Author(s):  
Fang Huang ◽  
Samantha L. Schwartz ◽  
Jason M. Byars ◽  
Keith A. Lidke


2016 ◽  
Vol 45 (17) ◽  
pp. 4651-4667 ◽  
Author(s):  
Zhigang Yang ◽  
Amit Sharma ◽  
Jing Qi ◽  
Xiao Peng ◽  
Dong Yeop Lee ◽  
...  

With the emerging of super-resolution fluorescent imaging microscopy techniques, biological targets below 200 nm in size are successful to be localized clearly and precisely with unprecedented details. In this tutorial review, the fluorescent materials, including organic fluorophores and nanomaterials, utilized in STED, single molecule localized microscopy (PALM/STORM) and SOFI microscopies, together with their working principles are mainly discussed.



2015 ◽  
Vol 127 (35) ◽  
pp. 10175-10175
Author(s):  
Ralph Wieneke ◽  
Anika Raulf ◽  
Alina Kollmannsperger ◽  
Mike Heilemann ◽  
Robert Tampé


Sign in / Sign up

Export Citation Format

Share Document