Combined static and dynamic intramicellar fluorescence quenching: effects on stationary and time-resolved Stern–Volmer experiments

2019 ◽  
Vol 21 (19) ◽  
pp. 10075-10085 ◽  
Author(s):  
Tim Kohlmann ◽  
Martin Goez

It ain’t necessarily so—existing theories of combined quenching in micelles are flawed. We derive a consistent model, analyze its properties, and apply it to obtain information on ground-state complexes between fluorophore F and quencher Q.


2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.



1995 ◽  
Vol 16 (2) ◽  
pp. 121-138 ◽  
Author(s):  
S. Antrobus ◽  
D. Husain ◽  
Jie Lei ◽  
F. Castaño ◽  
M. N. Sanchez Rayo

A time-resolved investigation is presented of the electronic energy distribution in SrI following the collision of the optically metastable strontium atom, Sr [5s5p(3PJ)], with the molecule CF3I. Sr[5s5p(3PJ)], 1.807 eV above its 5s2(1S0) electronic ground state, was generated by pulsed dye-laser excitation of ground state strontium vapour to the Sr(53P1) state at , λ =689.3 nm {Sr(53P1←51S0)} at elevated temperature (840 K) in the presence of excess helium buffer gas in which rapid Boltzmann equilibration within the 53PJ spin-orbit manifold takes place. Time resolved atomic emission from Sr(53P1→51S0) at the resonance transition and the molecular chemiluminescence from SrI(A2∏1,2,3/2,B2∑+→X2∑+) resulting from reaction of the excited atom with CF3I were recorded and shown to be exponential in character. SrI in the A2∏1/2,3/2 (172.5, 175.4 kJ mol-1) and B2∑+ (177.3 kJ mol-1) states are energetically accessible on collision by direct-I-atomic abstraction between Sr(3P) and CF3I. The first-order decay coefficients for the atomic and molecular emissions are found to be equal under identical conditions and hence SrI(A2∏1/2,3/2, B2∑+) are shown to arise from direct I- atom abstraction reactions. The molecular systems recorded were SrI (A2∏1/2→X2∑+, Δv=0, λ=694 nm), SrI(A2∏3/2→X2∑+, Δv=0, λ=677 nm) and SrI(B2∑+→X2∑+) (Δv=0, λ=674 nm), dominated by the Δv=0 sequences on account of Franck-Condon considerations. The combination of integrated m61ecular and atomic intensity measurements yields estimates of the branching ratios into the specific electronic states, A1/2, A3/2 and B, arising from Sr(53PJ)+CF3I which are found to be as follows: A1/2,1.2 × 10-2; A3/2, 6.7 × 10-3; B, 5.1 × 10-3 yielding ∑SrI(A1/2+A3/2+B)=2.4 × 10-2. As only the X, A and B states SrI are accessible on reaction, assuming that the removal of Sr(53PJ) occurs totally by chemical removal, this yields an upper limit for the branching ratio into the ground state of ca. 98%. The present results are compared with previous time-resolved measurements on excited states of strontium halides that we have reported on various halogenated species resulting from reactions of Sr(53PJ), together with analogous chemiluminescence studies on Sr(3PJ) and Ca(43PJ) from molecular beam measurements.



Langmuir ◽  
2001 ◽  
Vol 17 (22) ◽  
pp. 6765-6770 ◽  
Author(s):  
Radha Ranganathan ◽  
Miroslav Peric ◽  
Rosa Medina ◽  
Ulises Garcia ◽  
Barney L. Bales ◽  
...  


2010 ◽  
Vol 8 (3) ◽  
pp. 674-686 ◽  
Author(s):  
Magda Milewska ◽  
Katarzyna Guzow ◽  
Wiesław Wiczk

AbstractThe ability of new chelate ligands, benzoxazol-5-yl-alanine derivatives substituted in position 2 by heteroaromatic substituent, to form complexes with selected metal ions in acetonitrile are studied by means of absorption and steady-state and time-resolved fluorescence spectroscopy. Among the ligands studied, only azaaromatic derivatives form stable complexes with transition metal ions in the ground state. Their absorption bands are bathochromically shifted enabling to use those ligands as ratiometric sensors. The fluorescence of each ligand is quenched by metal ions, however, in the presence of Cd(II) and Zn(II) ions a new red shifted emission band is observed.



Langmuir ◽  
2006 ◽  
Vol 22 (6) ◽  
pp. 2551-2557 ◽  
Author(s):  
Laurent Wattebled ◽  
André Laschewsky ◽  
Alain Moussa ◽  
Jean-Louis Habib-Jiwan


2008 ◽  
Vol 22 (2-3) ◽  
pp. 63-82 ◽  
Author(s):  
Andreas Barth

This review discusses the contribution of time-resolved infrared spectroscopy to the understanding of the Ca2+pump in the sarcoplasmic reticulum membrane of skeletal muscle cells (SERCA1a). The focus is on interactions of the substrate ATP with the ATPase and on the bond parameters of the phosphoenzyme phosphate group. Functional groups throughout the ATP molecule are important for stabilising the closed conformation of the ATP–ATPase complex and for fast phosphorylation of the ATPase. Dissociation of the reaction product ADP after phosphorylation leads to a more open average conformation of the enzyme and does not trigger the transition from the first phosphoenzyme Ca2E1P to the second E2P. The P–O bond between phosphate and aspartyl moieties is weaker in Ca2E1P and E2P than in acetyl phosphate in aqueous solution, which explains the high reactivity of the phosphoenzymes. This ground state property of the phosphoenzymes prepares for a phosphate transfer reaction with dissociative character.



2020 ◽  
Vol 62 (11) ◽  
pp. 1816
Author(s):  
С.В. Некрасов ◽  
Ю.Г. Кусраев ◽  
И.А. Акимов ◽  
L. Langer ◽  
M. Kotur ◽  
...  

The dynamics of the photoluminescence negative circular polarization of the InP/(In,Ga)P quantum dots ensemble was studied. We find that in the time-resolved dependences of the polarization there are no oscillations in Voigt magnetic field. Also, with increasing field the polarization declines to zero. Such behavior is attributed to the peculiarities of the negatively charged exciton spin dynamics, particularly, to the fact that in the negatively charged exciton ground state the spin dynamics is governed by the heavy hole. We show that magnetic field depolarization of the photoluminescence occurs once the field of dynamically polarized nuclear spins acting on electron spins is surpassed.



Sign in / Sign up

Export Citation Format

Share Document