Structural insights into T2-cluster-containing chalcogenides with vertex-, edge- and face-sharing connection modes of NaQ6 ligands: Na3ZnMIIIQ4 (MIII = In, Ga; Q = S, Se)

2018 ◽  
Vol 47 (43) ◽  
pp. 15538-15544 ◽  
Author(s):  
Ruijiao Chen ◽  
Xiaowen Wu ◽  
Zhi Su

New series of T2-cluster-containing chalcogenides exhibiting the novel connection mode of NaS6 ligands and torsional adjacent T2-clusters were reported.

2014 ◽  
Vol 70 (3) ◽  
pp. 780-788 ◽  
Author(s):  
Jae-Woo Ahn ◽  
Sangwoo Kim ◽  
Eun-Jung Kim ◽  
Yeo-Jin Kim ◽  
Kyung-Jin Kim

The hPrp19–CDC5L complex plays a crucial role during human pre-mRNA splicing by catalytic activation of the spliceosome. In order to elucidate the molecular architecture of the hPrp19–CDC5L complex, the crystal structure of CTNNBL1, one of the major components of this complex, was determined. Unlike canonical ARM-repeat proteins such as β-catenin and importin-α, CTNNBL1 was found to contain a twisted and extended ARM-repeat structure at the C-terminal domain and, more importantly, the protein formed a stable dimer. A highly negatively charged patch formed in the N-terminal ARM-repeat domain of CTNNBL1 provides a binding site for CDC5L, a binding partner of the protein in the hPrp19–CDC5L complex, and these two proteins form a complex with a stoichiometry of 2:2. These findings not only present the crystal structure of a novel ARM-repeat protein, CTNNBL1, but also provide insights into the detailed molecular architecture of the hPrp19–CDC5L complex.


2022 ◽  
Author(s):  
Mitchell Benton ◽  
Mercede Furr ◽  
Vivek Govind Kumar ◽  
Feng Gao ◽  
Colin D Heyes ◽  
...  

The novel multidomain protein, cpSRP43, is a unique subunit of the post-translational chloroplast signal recognition particle (cpSRP) targeting pathway in higher plants. The cpSRP pathway is responsible for targeting and insertion of light-harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. Nuclear-encoded LHCPs are synthesized in the cytoplasm then imported into the chloroplast. Upon emergence into the stroma, LHCPs form a soluble transit complex with the cpSRP heterodimer, which is composed of cpSRP43 and cpSRP54, a 54 kDa subunit homologous to the universally conserved GTPase in cytosolic SRP pathways. cpSRP43 is irreplaceable as a chaperone to LHCPs in their translocation to the thylakoid membrane and remarkable in its ability to dissolve aggregates of LHCPs without the need for external energy input. In previous studies, cpSRP43 has demonstrated significant flexibility and interdomain dynamics. However, the high flexibility and structural dynamics of cpSRP43 is yet unexplained by current crystal structures of cpSRP43. This is due, in part, to the fact that free full length cpSRP43 is so flexible that it is unable to crystalize. In this study, we explore the structural stability of cpSRP43 under different conditions using various biophysical techniques and find that this protein is concurrently highly stable and flexible. This conclusion is interesting considering that stable proteins typically possess a non-dynamic structure. Molecular dynamics (MD) simulations which correlated with data from biophysical experimentation were used to explain the basis of the extraordinary stability of cpSRP43. This combination of biophysical data and microsecond-level MD simulations allows us to obtain a detailed perspective of the conformational landscape of these proteins.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hans Denis Bamal ◽  
Wanping Chen ◽  
Samson Sitheni Mashele ◽  
David R. Nelson ◽  
Abidemi Paul Kappo ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raees Khan ◽  
Amir Zeb ◽  
Kihyuck Choi ◽  
Gihwan Lee ◽  
Keun Woo Lee ◽  
...  

Abstract Enoyl-acyl carrier protein reductase (ENR) catalyzes the last reduction step in the bacterial type II fatty acid biosynthesis cycle. ENRs include FabI, FabL, FabL2, FabK, and FabV. Previously, we reported a unique triclosan (TCL) resistant ENR homolog that was predominant in obligate intracellular pathogenic bacteria and Apicomplexa. Herein, we report the biochemical and structural basis of TCL resistance in this novel ENR. The purified protein revealed NADH-dependent ENR activity and shared similarity to prototypic FabI. Thus, this metagenome-derived ENR was designated FabI2. Unlike other prototypic bacterial ENRs with the YX6K type catalytic domain, FabI2 possessed a unique YX7K type catalytic domain. Computational modeling followed by site-directed mutagenesis revealed that mild resistance (20 µg/ml of minimum inhibitory concentration) of FabI2 to TCL was confined to the relatively less bulky side chain of A128. Substitution of A128 in FabI2 with bulky valine (V128) elevated TCL resistance. Phylogenetic analysis further suggested that the novel FabI2 and prototypical FabI evolved from a common short-chain dehydrogenase reductase family. To our best knowledge, FabI2 is the only known ENR shared by intracellular pathogenic prokaryotes, intracellular pathogenic lower eukaryotes, and a few higher eukaryotes. This suggests that the ENRs of prokaryotes and eukaryotes diverged from a common ancestral ENR of FabI2.


2005 ◽  
Vol 138 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Masahiko Okuda ◽  
Aki Tanaka ◽  
Fumio Hanaoka ◽  
Yoshiaki Ohkuma ◽  
Yoshifumi Nishimura

2010 ◽  
Vol 34 (8) ◽  
pp. S33-S33
Author(s):  
Wenchao Ou ◽  
Haifeng Chen ◽  
Yun Zhong ◽  
Benrong Liu ◽  
Keji Chen

Sign in / Sign up

Export Citation Format

Share Document