Catalytic oxidation of alcohols with novel non-heme N4-tetradentate manganese(ii) complexes

2018 ◽  
Vol 47 (46) ◽  
pp. 16534-16542 ◽  
Author(s):  
Vincent Vermaak ◽  
Desmond A. Young ◽  
Andrew J. Swarts

Novel non-heme Mn(ii) complexes were found to be efficient catalysts for alcohol oxidation, displaying excellent activity and functional group tolerance under mild reaction conditions.

2020 ◽  
Vol 49 (48) ◽  
pp. 17674-17682
Author(s):  
Dide G. A. Verhoeven ◽  
Martin Albrecht

Pyridylidene amide (PYA) iron(ii) complexes were synthesized with different donor sets: the NN-bidentate PYA is unstable; the NNN set inhibits catalytic oxidation; while the ONO-tridentate pincer-type PYA promotes oxidation of alcohols and thiols.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


Synthesis ◽  
2021 ◽  
Author(s):  
Hongji Li ◽  
Wenjie Zhang ◽  
Xueyan Liu ◽  
Zhenfeng Tian

AbstractWe herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.


2021 ◽  
Author(s):  
Shi-Ping Wu ◽  
Dong-Kai Wang ◽  
Qing-Qing Kang ◽  
Guo-Ping Ge ◽  
Hongxing Zheng ◽  
...  

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclizations of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and...


Synlett ◽  
2020 ◽  
Author(s):  
Margaret R Jones ◽  
Nathan D. Schley

The field of catalytic C-H borylation has grown considerably since its founding, providing a means for the preparation of synthetically versatile organoborane products. While sp2 C-H borylation methods have found widespread and practical use in organic synthesis, the analogous sp3 C-H borylation reaction remains challenging and has seen limited application. Existing catalysts are often hindered by incomplete consumption of the diboron reagent, poor functional group tolerance, harsh reaction conditions, and the need for excess or neat substrate. These challenges acutely affect C-H borylation chemistry of unactivated hydrocarbon substrates, which has lagged in comparison to methods for the C-H borylation of activated compounds. Herein we discuss recent advances in sp3 C-H borylation of undirected substrates in the context of two particular challenges: (1) utilization of the diboron reagent and (2) the need for excess or neat substrate. Our recent work on the application of dipyridylarylmethane ligands in sp3 C-H borylation has allowed us to make contributions in this space and has presented an additional ligand scaffold to supplement traditional phenanthroline ligands.


2015 ◽  
Vol 51 (56) ◽  
pp. 11268-11271 ◽  
Author(s):  
Wen Dai ◽  
Ying Lv ◽  
Lianyue Wang ◽  
Sensen Shang ◽  
Bo Chen ◽  
...  

A novel strategy for catalytic oxidation of a variety of benzylic, allylic, propargylic, and aliphatic alcohols to the corresponding aldehydes or ketones has been successfully developed.


2021 ◽  
Vol 903 ◽  
pp. 143-148
Author(s):  
Svetlana Cornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko

Supported 3wt%Pd/α-Al₂O₃ catalyst was tested in selective oxidation of 1,2-propanediol by molecular oxygen. It was found that the catalyst is active in an alkaline water solution. Lactic acid was obtained as the main product of the reaction. Influence of different reaction conditions on 1,2-PDO conversion and oxidation process selectivity was studied. Partial kinetic orders of the reaction with respect to 1,2-propanediol, c0(NaOH), p(O2), n(1,2-PDO)/n(Pd)) were determined and an experimental kinetic model of the catalytic oxidation reaction was obtained. Activation energy of the process was calculated and was found to be about 53 ± 5 kJ/mol.


2018 ◽  
Vol 2019 (6) ◽  
pp. 1413-1417 ◽  
Author(s):  
Shelli A. Miller ◽  
Kathryn A. Bisset ◽  
Nicholas E. Leadbeater ◽  
Nicholas A. Eddy

2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


Sign in / Sign up

Export Citation Format

Share Document