Rh(III)-Catalyzed Olefination and Alkylation of Arenes with Maleimides: A Tunable Strategy for C(sp2)–H Functionalization

Synthesis ◽  
2021 ◽  
Author(s):  
Hongji Li ◽  
Wenjie Zhang ◽  
Xueyan Liu ◽  
Zhenfeng Tian

AbstractWe herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.

2018 ◽  
Author(s):  
Linda Ta ◽  
Anton Axelsson ◽  
Henrik Sundén

<p>In the ongoing quest to find alternatives to atom un-economical and forcing conditions in acylation reactions, aerobic oxidative NHC catalysis has emerged as a method to convert aldehydes to potent acylating reagents. This strategy has been utilized in the esterification of alcohols but not yet been shown for densely polyfunctionalized <i>N</i>- heterocycles such as, oxazolidinones and pyrrolidinones. Conventional acylation of oxazolidinones are typically associated with forcing reaction conditions, requiring separate activation steps and strong bases, which does not adhere to the principles of green chemistry. For reasons of waste prevention, atom economy, less hazardous syntheses and reduction of derivatives finding alternative methods are desirable.</p><p> </p>In this manuscript, we demonstrate the synthesis of several <i>N</i>-acylated oxazolidinones and pyrrolidinones that are chemically relevant, both found as pharmaceuticals and natural products as well as auxiliaries for synthesis. The developed method operates at room temperature and can be performed in ethyl acetate with open reaction vessels. The substrate scope is broad, with products isolated in good to excellent yields. The functional group tolerance is exemplified with 22 entries, where different aldehydes, oxazolidinones and pyrrolidinones are systematically investigated. Moreover, the reaction is clean as water is generated as the only byproduct.


Author(s):  
Linda Ta ◽  
Anton Axelsson ◽  
Henrik Sundén

<p>In the ongoing quest to find alternatives to atom un-economical and forcing conditions in acylation reactions, aerobic oxidative NHC catalysis has emerged as a method to convert aldehydes to potent acylating reagents. This strategy has been utilized in the esterification of alcohols but not yet been shown for densely polyfunctionalized <i>N</i>- heterocycles such as, oxazolidinones and pyrrolidinones. Conventional acylation of oxazolidinones are typically associated with forcing reaction conditions, requiring separate activation steps and strong bases, which does not adhere to the principles of green chemistry. For reasons of waste prevention, atom economy, less hazardous syntheses and reduction of derivatives finding alternative methods are desirable.</p><p> </p>In this manuscript, we demonstrate the synthesis of several <i>N</i>-acylated oxazolidinones and pyrrolidinones that are chemically relevant, both found as pharmaceuticals and natural products as well as auxiliaries for synthesis. The developed method operates at room temperature and can be performed in ethyl acetate with open reaction vessels. The substrate scope is broad, with products isolated in good to excellent yields. The functional group tolerance is exemplified with 22 entries, where different aldehydes, oxazolidinones and pyrrolidinones are systematically investigated. Moreover, the reaction is clean as water is generated as the only byproduct.


1991 ◽  
Vol 69 (5) ◽  
pp. 817-821 ◽  
Author(s):  
René Roy ◽  
François D. Tropper

Starting from chloride 1, a series of para-substituted aryl 2-acetamido-2-deoxy-β-D-glucopyranosides were prepared using phase transfer catalysis conditions with tetrabutylammonium hydrogen sulfate in 1 M sodium hydroxide and methylene chloride at room temperature. Zemplén de-O-acetylation afforded the unprotected glycosides. Optimization of reaction conditions was evaluated. Several functional group manipulations were effected to widen the number and nature of the para-substituents. Key words: phase transfer catalysis, aryl 2-acetamido-2-deoxy-β-D-glucopyranosides.


2019 ◽  
Vol 23 (16) ◽  
pp. 1778-1788 ◽  
Author(s):  
Gurpreet Kaur ◽  
Arvind Singh ◽  
Kiran Bala ◽  
Mamta Devi ◽  
Anjana Kumari ◽  
...  

A simple, straightforward and efficient method has been developed for the synthesis of (E)-3-(arylimino)indolin-2-one derivatives and (E)-2-((4-methoxyphenyl)imino)- acenaphthylen-1(2H)-one. The synthesis of these biologically-significant scaffolds was achieved from the reactions of various substituted anilines and isatins or acenaphthaquinone, respectively, using commercially available, environmentally benign and naturally occurring organic acids such as mandelic acid or itaconic acid as catalyst in aqueous medium at room temperature. Mild reaction conditions, energy efficiency, good to excellent yields, environmentally benign conditions, easy isolation of products, no need of column chromatographic separation and the reusability of reaction media are some of the significant features of the present protocol.


2019 ◽  
Vol 16 (12) ◽  
pp. 955-958
Author(s):  
Reddymasu Sireesha ◽  
Reddymasu Sreenivasulu ◽  
Choragudi Chandrasekhar ◽  
Mannam Subba Rao

: Deprotection is significant and conducted over mild reaction conditions, in order to restrict any more side reactions with sensitive functional groups as well as racemization or epimerization of stereo center because the protective groups are often cleaved at last stage in the synthesis. P - Methoxy benzyl (PMB) ether appears unique due to its easy introduction and removal than the other benzyl ether protecting groups. A facile, efficient and highly selective cleavage of P - methoxy benzyl ethers was reported by using 20 mole% Zinc (II) Trifluoromethanesulfonate at room temperature in acetonitrile solvent over 15-120 min. time period. To study the generality of this methodology, several PMB ethers were prepared from a variety of substrates having different protecting groups and subjected to deprotection of PMB ethers using Zn(OTf)2 in acetonitrile. In this methodology, zinc triflate cleaves only PMB ethers without affecting acid sensitivity, base sensitivity and also chiral epoxide groups.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


1987 ◽  
Vol 52 (4) ◽  
pp. 970-979 ◽  
Author(s):  
Otto Exner ◽  
Pavel Fiedler

Aromatic chloroformates Ib-Ie were shown to exist in the ap conformation, in agreement with aliphatic chloroformates, i.e. the alkyl group is situated cis to the carbonyl oxygen atom as it is the case in all esters. While 4-nitrophenyl chloroformate (Ie) is in this conformation in crystal, in solution at most several tenths of percent of the sp conformation may be populated at room temperature and in nonpolar solvents only. A new analysis of dipole moments explained the previous puzzling results and demonstrated the impossibility to determine the conformation by this single method, in consequence of the strong interaction of adjoining bonds. If, however, the ap conformation is once proven, the dipole moments reveal some features of the electron distribution on the functional group, characterized by the enhanced polarity of the C-Cl bond and reduced polarity of the C=O bond. This is in agreement with the observed bond lengths and angles.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


2021 ◽  
Author(s):  
Shi-Ping Wu ◽  
Dong-Kai Wang ◽  
Qing-Qing Kang ◽  
Guo-Ping Ge ◽  
Hongxing Zheng ◽  
...  

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclizations of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and...


Sign in / Sign up

Export Citation Format

Share Document