Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance

2019 ◽  
Vol 12 (2) ◽  
pp. 624-630 ◽  
Author(s):  
Yu Pan ◽  
Yang Qiu ◽  
Ian Witting ◽  
Liguo Zhang ◽  
Chenguang Fu ◽  
...  

Two-step sintering efficiently enhances zT by tuning the microstructure in a wide range from atomic defects to micrometer second phase.

Nano Energy ◽  
2020 ◽  
Vol 71 ◽  
pp. 104658 ◽  
Author(s):  
Boyi Wang ◽  
Shuqi Zheng ◽  
Qing Wang ◽  
Zhiliang Li ◽  
Juan Li ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Ehsan Nasr Esfahani ◽  
Feiyue Ma ◽  
Shanyu Wang ◽  
Yun Ou ◽  
Jihui Yang ◽  
...  

Abstract In the last two decades, a nanostructuring paradigm has been successfully applied in a wide range of thermoelectric materials, resulting in significant reduction in thermal conductivity and superior thermoelectric performance. These advances, however, have been accomplished without directly investigating the local thermoelectric properties, even though local electric current can be mapped with high spatial resolution. In fact, there still lacks an effective method that links the macroscopic thermoelectric performance to the local microstructures and properties. Here, we show that local thermal conductivity can be mapped quantitatively with good accuracy, nanometer resolution and one-to-one correspondence to the microstructure using a three-phase skutterudite as a model system. Scanning thermal microscopy combined with finite element simulations demonstrate close correlation between sample conductivity and probe resistance, enabling us to distinguish thermal conductivities spanning orders of magnitude, yet resolving thermal variation across a phase interface with small contrast. The technique thus provides a powerful tool to correlate local thermal conductivities, microstructures and macroscopic properties for nanostructured materials in general and nanostructured thermoelectrics in particular.


2021 ◽  
Vol 5 (6) ◽  
pp. 1734-1746
Author(s):  
D. Sidharth ◽  
A. S. Alagar Nedunchezhian ◽  
R. Akilan ◽  
Anup Srivastava ◽  
Bhuvanesh Srinivasan ◽  
...  

The power factor of GeSe enhanced and thermal conductivity decreased by Te substitution and thereby, GeSe0.80Te0.20 exhibits high ZT.


Author(s):  
Zihang Liu ◽  
Wenhao Zhang ◽  
Weihong Gao ◽  
Takao Mori

Discovering materials with the intrinsically low lattice thermal conductivity κlat is an important route for achieving high thermoelectric performance. In reality, the conventional synthetic approach, however, relies on trial and...


2021 ◽  
Vol 143 (15) ◽  
pp. 5978-5989
Author(s):  
Hongyao Xie ◽  
Shiqiang Hao ◽  
Trevor P. Bailey ◽  
Songting Cai ◽  
Yinying Zhang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dieter M. Tourlousse ◽  
Koji Narita ◽  
Takamasa Miura ◽  
Mitsuo Sakamoto ◽  
Akiko Ohashi ◽  
...  

Abstract Background Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples. Results In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories. Conclusions The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products.


Sign in / Sign up

Export Citation Format

Share Document