Application of external voltage for fouling mitigation from graphene oxide, reduced graphene oxide and molybdenum disulfide functionalized surfaces

2019 ◽  
Vol 6 (3) ◽  
pp. 925-936 ◽  
Author(s):  
Iftaykhairul Alam ◽  
Linda M. Guiney ◽  
Mark C. Hersam ◽  
Indranil Chowdhury

Fouling of surfaces remains one of the largest challenges in the field of water filtration.

Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 68
Author(s):  
Pankaj Kumar Jha ◽  
Watsa Khongnakorn ◽  
Chamorn Chawenjkigwanich ◽  
Md Shahariar Chowdhury ◽  
Kuaanan Techato

In this paper, the green synthesis of reduced graphene oxide (r-GO) nanomaterials using Callistemon viminalis leaf extract as a reducing and stabilizing agent is reported for the first time. The synthesized r-GO nanomaterials were characterized using UV–Vis, XRD, FE-SEM, TEM, and energy dispersive X-ray (EDX) analyses. The nanofilter membrane was prepared by varying the amounts of r-GO nanomaterials in a Polysulfone-N,N-dimethyl formamide (DMF) solution. The nanofilter membrane was characterized by the contact angle, atomic force microscopy (AFM), UV–Vis, and FTIR. The results confirm the formation of r-GO nanomaterials. Higher amounts of r-GO nanomaterials in the membrane show a lower contact angle, thus confirming their hydrophilic nature. Iron water filtration was performed with different amounts of r-GO nanomaterials in the membrane filter, and the water flux was smooth over an increased time period. Inductively Coupled Plasma (ICP) analysis showed a higher percentage of iron rejection (95.77%) when higher amounts (0.10 g) of r-GO nanomaterials were used in a mixed membrane (i.e., sample C). In conclusion, the findings illustrate that Callistemon viminalis mediates the synthesis of r-GO nanomaterials, which is useful in water filtration, and can be incorporated into membrane filters, since it removes iron.


Sign in / Sign up

Export Citation Format

Share Document