scholarly journals Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO

2019 ◽  
Vol 216 ◽  
pp. 414-433 ◽  
Author(s):  
Johannes Mahl ◽  
Stefan Neppl ◽  
Friedrich Roth ◽  
Mario Borgwardt ◽  
Catherine Saladrigas ◽  
...  

Laser-induced energy deposition and heat transport in CuO is studied by picosecond time-resolved X-ray absorption spectroscopy.

2019 ◽  
Vol 205 ◽  
pp. 04015
Author(s):  
Johannes Mahl ◽  
Stefan Neppl ◽  
Friedrich Roth ◽  
Catherine Saladrigas ◽  
Hendrik Bluhm ◽  
...  

Electronic and lattice contributions to transient X-ray absorption spectra of CuO are analyzed using picosecond time-resolved and temperature-dependent measurements. Super-bandgap excitation with 355 nm and 532 nm laser pulses leads to significantly different trends.


2021 ◽  
Vol 22 (24) ◽  
pp. 13463
Author(s):  
Holger Stiel ◽  
Julia Braenzel ◽  
Adrian Jonas ◽  
Richard Gnewkow ◽  
Lisa Theresa Glöggler ◽  
...  

The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV. We apply these setups for near-edge X-ray absorption fine structure (NEXAFS) investigations of thin films of a metal-free porphyrin, an aggregate forming carbocyanine and a nickel oxide molecule. NEXAFS investigations have been carried out at the carbon, nitrogen and oxygen K-edge as well as on the Ni L-edge. From time-resolved NEXAFS carbon, K-edge measurements of the metal-free porphyrin first insights into a long-lived trap state are gained. Our findings are discussed and compared with density functional theory calculations.


2004 ◽  
Vol 75 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Melanie Saes ◽  
Frank van Mourik ◽  
Wojciech Gawelda ◽  
Maik Kaiser ◽  
Majed Chergui ◽  
...  

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Yujin Kim ◽  
Daewoong Nam ◽  
Rory Ma ◽  
Sangsoo Kim ◽  
Myung-jin Kim ◽  
...  

Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L 3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.


2009 ◽  
Vol 96 (1) ◽  
pp. 11-18 ◽  
Author(s):  
G. Gavrila ◽  
K. Godehusen ◽  
C. Weniger ◽  
E. T. J. Nibbering ◽  
T. Elsaesser ◽  
...  

2020 ◽  
Vol 56 (71) ◽  
pp. 10329-10332 ◽  
Author(s):  
Paulo F. M. de Oliveira ◽  
Adam A. L. Michalchuk ◽  
Ana Guilherme Buzanich ◽  
Ralf Bienert ◽  
Roberto M. Torresi ◽  
...  

A new tandem approach combines XRD and XANES for time-resolved in situ monitoring of the mechanochemical synthesis of gold nanoparticles.


2019 ◽  
Vol 10 (6) ◽  
pp. 1382-1387 ◽  
Author(s):  
Kirsten Schnorr ◽  
Aditi Bhattacherjee ◽  
Katherine J. Oosterbaan ◽  
Mickaël G. Delcey ◽  
Zheyue Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document