temperature jumps
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Alexis K. Kaminski ◽  
Eric A. D’Asaro ◽  
Andrey Y. Shcherbina ◽  
Ramsey R. Harcourt

AbstractAcrucial region of the ocean surface boundary layer (OSBL) is the strongly-sheared and -stratified transition layer (TL) separating the mixed layer from the upper pycnocline, where a diverse range of waves and instabilities are possible. Previous work suggests that these different waves and instabilities will lead to different OSBL behaviours. Therefore, understanding which physical processes occur is key for modelling the TL. Here we present observations of the TL from a Lagrangian float deployed for 73 days near Ocean Weather Station Papa (50°N, 145°W) during Fall 2018. The float followed the vertical motion of the TL, continuously measuring profiles across it using an ADCP, temperature chain and salinity sensors. The temperature chain made depth/time images of TL structures with a resolution of 6cm and 3 seconds. These showed the frequent occurrence of very sharp interfaces, dominated by temperature jumps of O(1)°C over 6cm or less. Temperature inversions were typically small (≲ 10cm), frequent, and strongly-stratified; very few large overturns were observed. The corresponding velocity profiles varied over larger length scales than the temperature profiles. These structures are consistent with scouring behaviour rather than Kelvin-Helmholtz-type overturning. Their net effect, estimated via a Thorpe-scale analysis, suggests that these frequent small temperature inversions can account for the observed mixed layer deepening and entrainment flux. Corresponding estimates of dissipation, diffusivity, and heat fluxes also agree with previous TL studies, suggesting that the TL dynamics is dominated by these nearly continuous 10cm-scale mixing structures, rather than by less frequent larger overturns.


2021 ◽  
Vol 3 ◽  
pp. 24-29
Author(s):  
Yu.A. Kashlev ◽  
◽  
S.A. Maslyaev ◽  

A vacancy in a one-dimensional lattice is considered as a vacant site in a one-dimensional chain of atoms. The energy model of this system is a double potential well with two levels. Based on the relations of nonequilibrium statistical mechanics, including the Kubo formula for the transport coefficient, the frequency of vacancy jumps is calculated. In this case, two factors of the system perturbation are taken into account: lattice deformation associated with the formation of an empty site, and phonon scattering by mass fluctuations in the chain. An analysis of two high-temperature jumps is given. First, the classical limit of vacancy motion under weak coupling conditions is considered for small values of the gradient of the interaction potential of the defect with the chain. In the classical case, the transition of an atom adjacent to a vacancy occurs through a quasy-stationary excited state. Secondly, a jump under tight binding conditions, when the motion of a neighboring atom occurs through a quasistationary state of finite width, and therefore having a finite lifetime.


2020 ◽  
Vol 77 (12) ◽  
pp. 4251-4275 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams ◽  
Jeffrey C. Weil ◽  
Edward G. Patton ◽  
Harindra J. S. Fernando

AbstractTurbulent flow in a weakly convective marine atmospheric boundary layer (MABL) driven by geostrophic winds Ug = 10 m s−1 and heterogeneous sea surface temperature (SST) is examined using fine-mesh large-eddy simulation (LES). The imposed SST heterogeneity is a single-sided warm or cold front with temperature jumps Δθ = (2, −1.5) K varying over a horizontal distance between [0.1, −6] km characteristic of an upper-ocean mesoscale or submesoscale regime. A Fourier-fringe technique is implemented in the LES to overcome the assumptions of horizontally homogeneous periodic flow. Grid meshes of 2.2 × 109 points with fine-resolution (horizontal, vertical) spacing (δx = δy, δz) = (4.4, 2) m are used. Geostrophic winds blowing across SST isotherms generate secondary circulations that vary with the sign of the front. Warm fronts feature overshoots in the temperature field, nonlinear temperature and momentum fluxes, a local maximum in the vertical velocity variance, and an extended spatial evolution of the boundary layer with increasing distance from the SST front. Cold fronts collapse the incoming turbulence but leave behind residual motions above the boundary layer. In the case of a warm front, the internal boundary layer grows with downstream distance conveying the surface changes aloft and downwind. SST fronts modify entrainment fluxes and generate persistent horizontal advection at large distances from the front.


2020 ◽  
Vol 642 ◽  
pp. A89
Author(s):  
X. Zhang ◽  
A. Simionescu ◽  
H. Akamatsu ◽  
J. S. Kaastra ◽  
J. de Plaa ◽  
...  

Context. Previous Chandra observations of the Abell 3411-3412 merging galaxy cluster system revealed an outbound bullet-like sub-cluster in the northern part and many surface brightness edges at the southern periphery, where multiple diffuse sources are also reported from radio observations. Notably, a southeastern radio relic associated with fossil plasma from a radio galaxy and with a detected X-ray edge provides direct evidence of shock re-acceleration. The properties of the reported surface brightness features have yet to be constrained from a thermodynamic viewpoint. Aims. We use the XMM-Newton and Suzaku observations of Abell 3411-3412 to reveal the thermodynamical nature of the previously reported re-acceleration site and other X-ray surface brightness edges. We also aim to investigate the temperature profile in the low-density outskirts with Suzaku data. Methods. We performed both imaging and spectral analysis to measure the density jump and the temperature jump across multiple known X-ray surface brightness discontinuities. We present a new method to calibrate the vignetting function and spectral model of the XMM-Newton soft proton background. Archival Chandra, Suzaku, and ROSAT data are used to estimate the cosmic X-ray background and Galactic foreground levels with improved accuracy compared to standard blank sky spectra. Results. At the southeastern edge, temperature jumps revealed by both XMM-Newton and Suzaku point to a ℳ ∼ 1.2 shock, which agrees with the previous result from surface brightness fits with Chandra. The low Mach number supports the re-acceleration scenario at this shock front. The southern edge shows a more complex scenario, where a shock and the presence of stripped cold material may coincide. There is no evidence for a bow shock in front of the northwestern “bullet” sub-cluster. The Suzaku temperature profiles in the southern low-density regions are marginally higher than the typical relaxed cluster temperature profile. The measured value kT500 = 4.84 ± 0.04 ± 0.19 keV with XMM-Newton and kT500 = 5.17 ± 0.07 ± 0.13 keV with Suzaku are significantly lower than previously inferred from Chandra.


2020 ◽  
Vol 42 (1) ◽  
pp. 12-18
Author(s):  
A.A. Avramenko ◽  
N.P. Dmitrenko ◽  
Yu.Yu. Kovetska ◽  
E.A. Kondratieva

A steady heat transfer process of mixed convection in a flat vertical porous microchannel is considered. The results of simulation showed that Knudsen number effects are more significant in the neighborhood of the wall where growth of Knudsen numbers is accompanied with the velocity and temperature jumps on wall. With increasing parameter of porosity M (decreasing permeability), the flow velocity decreases and the velocity jump decrease as well. For all combinations of the criteria Ra, Kn and M increasing Knudsen number reduces heat transfer intensity. This can be attributed to increasing temperature jump on wall which causes deterioration of thermal interaction between the fluid and the wall. For low Rayleigh numbers increasing parameter M leads to increasing heat transfer since the temperature jump decrease on walls. For large Rayleigh numbers the trend becomes reversed, since for larger parameters M, the near-wall velocity decreases. For low Rayleigh numbers increasing the Knudsen number leads to decreasing hydraulic resistance coefficient, but with increasing parameter M leads to increasing this coefficient. At high Ra numbers increasing Knudsen number leads to growth of hydraulic resistance, which is due to increasing velocity gradient on the wall.


2020 ◽  
Author(s):  
Clément Montmartin ◽  
Michel Faure ◽  
Stéphane Scaillet ◽  
Hugues Raimbourg

<p>In the SE part of the Variscan French Massif Central, the Cévennes area belongs to the para-autochthonous unit of the southern Variscan belt. This area underwent three metamorphic events (Faure et al., 2001).  I) A green schist to low amphibolite facies one (500°C, 4.5Kb Arnaud, 1997) developed in micaschists and quartzites. These rocks were stacked as south-directed nappes during the final stage of the Variscan crustal thickening dated at ca 340 Ma by <sup>40</sup>Ar/<sup>39</sup>Ar on biotite (Caron, 1994). This early event was responsible for the flat-lying foliation, the N-S striking stretching lineation, and intrafolial foliation. II) A high temperature event (680°C, 4.5kb Rakib, 1996) dated at ca 325 Ma (<sup>40</sup>Ar/<sup>39</sup>Ar on two biotites, Najoui et al, 2000) overprinted the early one. On the basis of the mineral assemblages of this event, a NE-ward increase of the T conditions was interpreted as a remote effect of the Velay Dome (Rakib, 1996). III) Finally, the M<sup>t</sup>-Lozère and Aigoual-S<sup>t</sup>-Guiral-Liron monzogranitic plutons intruded the Cévennes para-autochthonous unit. Monazite and biotite yield U-Pb, and <sup>40</sup>Ar/<sup>39</sup>Ar ages at 315-303Ma and 306 Ma , respectively (Brichaud et al. 2008). The pluton emplacement conditions are determined at 695°C, 1.5Kb (Najoui et al, 2000).</p><p>We report Raman Spectrometry of Carbonaceous Matter (RSCM) paleotemperature data acquired on more than 100 samples throughout the entire Cévennes area. These show a regional homogeneous thermal distribution with a 535 ± 50 °C mean temperature without any geometric correlation with the nappes structure, nor the granitic intrusions. Moreover, no thermal increase towards the NE can be documented. SW of the Aigoual-S<sup>t</sup>-Guiral-Liron massif, our RSCM data document a temperature jumps between the overlying Cévennes micaschists and the underlying epimetamorphic rocks belonging the the Fold-and-Thust belt unit of the French Massif Central.</p><p>In order to constrain the age of this regional thermal event, we <sup>40</sup>Ar/<sup>39</sup>Ar dated 25 new regionally-distributed syn- and post-folial muscovites by step heating along two N-S cross sections within the Cévennes micaschists series. In areas distant from the plutons, the muscovite yields a ca 325 Ma age interpreted as the one of the HT event recorded by the RSCM measurements. However, young muscovite ages at ca 305Ma are observed around the plutons. We assume that the heat supplied by the plutons reset these muscovites at around 400°C while the organic matter cannot record the contact metamorphic peak lower than the regional one. Moreover, <sup>40</sup>Ar/<sup>39</sup>Ar in-situ analyses carried out on 5 mm-sized post folial (but deformed) biotites in the central part of the micaschist series provide ages around 320Ma. The presence of a hidden dome, underneath the Cévennes micaschists, similar to the pre-Velay migmatites exposed in the northern part of the Cévennes area (Faure et al., 2001, Be et al., 2006) is discussed.</p>


2020 ◽  
Vol 118 (3) ◽  
pp. 112a
Author(s):  
Carlos Alberto Z. Bassetto Jr ◽  
Bernardo Pinto ◽  
Ramon Latorre ◽  
Francisco Bezanilla

2020 ◽  
Vol 118 (3) ◽  
pp. 111a-112a
Author(s):  
Bernardo Pinto ◽  
Carlos Alberto Z. Bassetto Jr ◽  
Francisco Bezanilla ◽  
Ramon Latorre

2019 ◽  
Vol 6 (1) ◽  
pp. 161-176 ◽  
Author(s):  
A. Meents ◽  
M.O. Wiedorn

Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.


2019 ◽  
Vol 116 (34) ◽  
pp. 16736-16741 ◽  
Author(s):  
Tina Hecksher ◽  
Niels Boye Olsen ◽  
Jeppe C. Dyre

This paper presents physical-aging data for the silicone oil tetramethyl-tetraphenyl trisiloxane. The density and the high-frequency plateau shear modulus G∞ were monitored following temperature jumps starting from fully equilibrated conditions. Both quantities exhibit a fast change immediately after a temperature jump. Adopting the material-time formalism of Narayanaswamy, we determine from the dielectric loss at 0.178 Hz the time evolution of the aging-rate activation energy. The relative magnitude of the fast change of the activation energy differs from that of the density, but is identical to that of G∞. In fact, the activation energy is proportional to G∞ throughout the aging process, with minor deviations at the shortest times. This shows that for the silicone oil in question the dynamics are determined by G∞ in—as well as out of—equilibrium.


Sign in / Sign up

Export Citation Format

Share Document