scholarly journals Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0138777 ◽  
Author(s):  
María Plaza Davila ◽  
Patricia Martin Muñoz ◽  
Jose A. Tapia ◽  
Cristina Ortega Ferrusola ◽  
Carolina Balao da Silva C ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1239
Author(s):  
Peilu Jia ◽  
Shuli Ji ◽  
Hao Zhang ◽  
Yanan Chen ◽  
Tian Wang

The liver is an organ that produces large amounts of reactive oxygen species (ROS). Human infants or piglets are prone to oxidative damage due to their uncompleted development of the antioxidant system, causing liver disease. Piceatannol (PIC) has been found to have significant antioxidant effects. The aim of this experiment was to investigate the effects of PIC on the liver in piglets experiencing oxidative stress caused by diquat (DQ). After weaning, 54 male piglets (Duroc × [Landrace × Yorkshire]) were selected and randomly divided into three treatment groups: the CON group, the DQ-CON group, and the DQ-PIC group. The two challenged groups were injected with DQ and then orally administrated either PIC or another vehicle solution, while the control group was given sterile saline injections and an orally administrated vehicle solution. Compared to the results of the CON group, DQ increased the percentage of apoptosis cells in the liver, also decreased the amount of reduced glutathione (GSH) and increased the concentration of malondialdehyde (MDA). In addition, the adenosine triphosphate (ATP) production, activities of mitochondrial complex I, II, III, and V, and the protein expression level of sirtuin 1 (SIRT1) were inhibited by DQ. Furthermore, PIC supplementation inhibited the apoptosis of hepatic cells caused by DQ. PIC also decreased MDA levels and increased the amount of GSH. Piglets given PIC supplementation exhibited increased activities of mitochondrial complex I, II, III, and V, the protein expression level of SIRT1, and the ATP production in the liver. In conclusion, PIC affected the liver of piglets by improving redox status, preserving mitochondrial function, and preventing excessive apoptosis.


2019 ◽  
Vol 10 (5) ◽  
pp. 2528-2537 ◽  
Author(s):  
Darío E. Iglesias ◽  
Silvina S. Bombicino ◽  
Alberto Boveris ◽  
Laura B. Valdez

The aim was to study thein vitroeffect of nM to low μM concentration of (+)-catechin on the enzymatic activities of mitochondrial complex I and mtNOS, as well as the consequences on the membrane potential and H2O2production rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshihito Kishita ◽  
Kaori Ishikawa ◽  
Kazuto Nakada ◽  
Jun-Ichi Hayashi ◽  
Takuya Fushimi ◽  
...  

AbstractLeigh syndrome (LS) is an early-onset progressive neurodegenerative disorder associated with mitochondrial deficiency. m.14597A>G (p.Ile26Thr) in the MT-ND6 gene was reported to cause Leberʼs hereditary optic neuropathy (LHON) or dementia/dysarthria. In previous reports, less than 90% heteroplasmy was shown to result in adult-onset disease. Here, by whole mitochondrial sequencing, we identified m.14597A>G mutation of a patient with LS. PCR–RFLP analysis on fibroblasts from the patient revealed a high mutation load (> 90% heteroplasmy). We performed functional assays using cybrid cell models generated by fusing mtDNA-less rho0 HeLa cells with enucleated cells from patient fibroblasts carrying the m.14597A>G variant. Cybrid cell lines bearing the m.14597A>G variant exhibited severe effects on mitochondrial complex I activity. Additionally, impairment of cell proliferation, decreased ATP production and reduced oxygen consumption rate were observed in the cybrid cell lines bearing the m.14597A>G variant when the cells were metabolically stressed in medium containing galactose, indicating mitochondrial respiratory chain defects. These results suggest that a high mutation load of m.14597A>G leads to LS via a mitochondrial complex I defect, rather than LHON or dementia/dysarthria.


Cell Calcium ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 217-225 ◽  
Author(s):  
Evelyne Coussee ◽  
Patrick De Smet ◽  
Elke Bogaert ◽  
Iris Elens ◽  
Philip Van Damme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document