In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy

Lab on a Chip ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 934-940 ◽  
Author(s):  
Rui Tian ◽  
Kaitao Li ◽  
Wenying Shi ◽  
Caifeng Ding ◽  
Chao Lu

We demonstrate in situ visualization of hydrophilic heterogeneity inside microfluidic chips using aggregation-induced emission molecules to label the hydroxyl groups.

2015 ◽  
Vol 21 (51) ◽  
pp. 18539-18542 ◽  
Author(s):  
Charlotte E. Boott ◽  
Romain F. Laine ◽  
Pierre Mahou ◽  
John R. Finnegan ◽  
Erin M. Leitao ◽  
...  

2019 ◽  
Vol 91 (20) ◽  
pp. 12611-12614 ◽  
Author(s):  
Qiang Wang ◽  
Chunbin Li ◽  
Qingqing Chen ◽  
Pengfei Zhang ◽  
Dong Wang ◽  
...  

Author(s):  
Danning Hu ◽  
Liucheng Mao ◽  
Mengshi Wang ◽  
Hongye Huang ◽  
Renjian Hu ◽  
...  

2020 ◽  
Vol 142 (16) ◽  
pp. 7497-7505 ◽  
Author(s):  
Ya-Long Wang ◽  
Chong Li ◽  
Hong-Qing Qu ◽  
Cheng Fan ◽  
Peng-Ju Zhao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Precisvalle ◽  
A. Martucci ◽  
L. Gigli ◽  
J. R. Plaisier ◽  
T. C. Hansen ◽  
...  

AbstractTopaz [Al2SiO4(F,OH)2] is one of the main fluorine-bearing silicates occurring in environments where variably acidic (F)/aqueous (OH) fluids saturate the silicate system. In this work we fully characterized blue topaz from Padre Paraíso (Minas Gerais, Brazil) by means of in situ synchrotron X-Ray and neutron powder diffraction measurements (temperature range 298–1273 K) combined with EDS microanalyses. Understanding the role of OH/F substitution in topaz is important in order to determine the hydrophilicity and the exchange reactions of fluorine by hydroxyl groups, and ultimately to characterize the environmental redox conditions (H2O/F) required for mineral formation. The fluorine content estimated from neutron diffraction data is ~ 1.03 a.f.u (10.34 wt%), in agreement with the chemical data (on average 10.0 wt%). The XOH [OH/(OH + F)] (0.484) is close to the maximum XOH value (0.5), and represents the OH- richest topaz composition so far analysed in the Minas Gerais district. Topaz crystallinity and fluorine content sharply decrease at 1170 K, while mullite phase starts growing. On the basis of this behaviour, we suggest that this temperature may represent the potential initial topaz’s crystallization temperature from supercritical fluids in a pegmatite system. The log(fH2O/fHF)fluid (1.27 (0.06)) is coherent with the fluorine activity calculated for hydrothermal fluids (pegmatitic stage) in equilibrium with the forming mineral (log(fH2O/fHF)fluid = 1.2–6.5) and clearly different from pure magmatic (granitic) residual melts [log(fH2O/fHF)fluid < 1]. The modelled H2O saturated fluids with the F content not exceeding 1 wt% may represent an anomalous water-dominant / fluorine-poor pegmatite lens of the Padre Paraíso Pegmatite Field.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2108-2109
Author(s):  
Alexandre Foucher ◽  
Nicholas Marcella ◽  
Anna Plonka ◽  
Anatoly Frenkel ◽  
Eric Stach

Sign in / Sign up

Export Citation Format

Share Document