Role of a 2,3-bis(pyridyl)pyrazinyl chelate bridging ligand in the reactivity of Ru(ii)–Pt(ii) dinuclear complexes on the substitution of chlorides by thiourea nucleophiles – a kinetic study

2018 ◽  
Vol 42 (15) ◽  
pp. 12557-12569 ◽  
Author(s):  
Rajesh Bellam ◽  
Deogratius Jaganyi ◽  
Allen Mambanda ◽  
Ross Robinson

Effect of a bridged ligand on the chloride substitution from hetero bimetallic Ru(ii)–Pt(ii)dichlo complexes by thiourea nucleolus was studied in a methanol medium (I = 0.10 M) under pseudo-first-order conditions.

1991 ◽  
Vol 274 (2) ◽  
pp. 581-585 ◽  
Author(s):  
S C Kivatinitz ◽  
A Miglio ◽  
R Ghidoni

The fate of exogenous ganglioside GM1 labelled in the sphingosine moiety, [Sph-3H]GM1, administered as a pulse, in the isolated perfused rat liver was investigated. When a non-recirculating protocol was employed, the amount of radioactivity in the liver and perfusates was found to be dependent on the presence of BSA in the perfusion liquid and on the time elapsed after the administration of the ganglioside. When BSA was added to the perfusion liquid, less radioactivity was found in the liver and more in the perfusate at each time tested, for up to 1 h. The recovery of radioactivity in the perfusates followed a complex course which can be described by three pseudo-first-order kinetic constants. The constants, in order of decreasing velocity, are interpreted as: (a) the dilution of the labelled GM1 by the constant influx of perfusion liquid; (b) the washing off of GM1 loosely bound to the surface of liver cells; (c) the release of gangliosides from the liver. Process (b) was found to be faster in the presence of BSA, probably owing to the ability of BSA to bind gangliosides. The [Sph-3H]GM1 in the liver underwent metabolism, leading to the appearance of products of anabolic (GD1a, GD1b) and catabolic (GM2, GM3) origin; GD1a appeared before GM2 and GM3 but, at times longer than 10 min, GM2 and GM3 showed more radioactivity than GD1a. At a given time the distribution of the radioactivity in the perfusates was quite different from that of the liver. In fact, after 60 min GD1a was the only metabolite present in any amount, the other being GM3, the quantity of which was small. This indicates that the liver is able to release newly synthesized gangliosides quite specifically. When a recirculating protocol was used, there were more catabolites and less GD1a than with the non-recirculating protocol. A possible regulatory role of ganglioside re-internalization on their own metabolism in the liver is postulated.


2019 ◽  
Vol 79 (6) ◽  
pp. 1134-1143 ◽  
Author(s):  
Ada Azevedo Barbosa ◽  
Ramon Vinicius Santos de Aquino ◽  
Naiana Santos da Cruz Santana Neves ◽  
Renato Falcão Dantas ◽  
Marta Maria Menezes Bezerra Duarte ◽  
...  

Abstract This work investigated the efficiency of polyethylene terephthalate (PET) as support material for TiO2 films in the photocatalytic degradation of red Bordeaux and yellow tartrazine dyes. The optimum operating conditions were determined by a factorial design, which resulted after 180 min of treatment in degradations of 99.5% and 99.1% for the UVC/H2O2/TiO2Sup and solar/H2O2/TiO2Sup systems, respectively. For the kinetic study, the experimental data fitted to the pseudo-first-order model and the calculated kinetic constants (k) values were 0.03 min−1 for the UVC/H2O2/TiO2Sup system and 0.0213 min−1 for the system solar/H2O2/TiO2Sup. It was verified that TiO2 supported in the PET remained with high degradation efficiency even after five cycles of reuse, indicating a good stability of the photocatalyst in the support. A significant reduction of TOC content was also observed along the reaction time. The phytotoxicity bioassay with Lactuca sativa demonstrated that after treatment with UVC/H2O2/TiO2Sup and solar/H2O2/TiO2SUP, an increase in IC50 and consequently lower toxicity was observed.


1991 ◽  
Vol 278 (2) ◽  
pp. 595-599 ◽  
Author(s):  
N Hirano ◽  
T Ichiba ◽  
A Hachimori

Treatment of the inorganic pyrophosphatase from thermophilic bacterium PS-3 with diethyl pyrocarbonate resulted in the almost complete loss of its activity, which followed pseudo-first-order kinetics. The presence of Mg2+ prevented the inactivation. Enzyme inactivated with diethyl pyrocarbonate was re-activated by hydroxylamine. The inactivation parallelled the amount of modified histidine residue, and a plot of the activity remaining against the amount of modified histidine residue suggested that the modification of one of two histidine residues totally inactivated the enzyme. The site involved was found to be located in a single lysyl endopeptidase-digest peptide derived from the ethoxy[14C]carbonylated enzyme. Amino acid analysis and sequence analysis of the peptide revealed that it comprised residues 96-119 of the inorganic pyrophosphatase from thermophilic bacterium PS-3. These results, when compared with those reported for the Escherichia coli and yeast enzymes, imply that His-118 of the inorganic pyrophosphatase from thermophilic bacterium PS-3 is located near the Mg(2+)-binding site and thus affects the binding of Mg2+.


2011 ◽  
Vol 11 (21) ◽  
pp. 10837-10851 ◽  
Author(s):  
R. K. Talukdar ◽  
L. Zhu ◽  
K. J. Feierabend ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of CH3COCHO (methylglyoxal) with the OH and NO3 radicals and (CHO)2 (glyoxal) with the NO3 radical are reported. Rate coefficients for the OH + CH3COCHO (k1) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k1 was found to be independent of the bath gas pressure with k1(295 K) = (1.29 ± 0.13) × 10−11 cm3 molecule−1 s−1 and a temperature dependence that is well represented by the Arrhenius expression k1(T) = (1.74 ± 0.20) × 10−12 exp[(590 ± 40)/T] cm3 molecule−1 s−1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO3 + (CHO)2 (k3) and NO3 + CH3COCHO (k4) reactions were measured using a relative rate technique to be k3(296 K) = (4.0 ± 1.0) × 10−16 cm3 molecule−1 s−1 and k4(296 K) = (5.1 ± 2.1) × 10−16 cm3 molecule−1 s−1. k3(T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10−16 and (7.9 ± 3.6) × 10−16 cm3 molecule−1 s−1, respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO3 reaction rate coefficients measured in this work are discussed.


1970 ◽  
Vol 25 (5) ◽  
pp. 484-491 ◽  
Author(s):  
Hans-Friedrich Eicke ◽  
Helmut Fiege ◽  
Karl-Dietrich Gundermann

The chemoluminescence-system: DNH/NaOHaq/H2O2/hemin was investigated with the help of a “stopped-flow-technique”. By use of an optical cut-off-filter the chemoluminescence- (514 nm), and the absorptionband (325 nm) resp. could be separated which proved impossible with luminol. In this way we could follow the temporal change of chemoluminescence and of absorption of DNH: the latter dropped coutinually with progress of the reaction while the chemoluminescence-intensity passed through a maximum before it decreased according to the same rate law (pseudo first order conditions as for DNH) which governs the absorption change of DNH. The oxidation of DNH is rate-determining and of first order as to DNH, H2O2 and (possibly) NaOH (k1 = 1,5·10-3 s-1-1 M-2). The kinetic interpretation of the chemoluminescence-maxima confirmed this result. The light production occurred in a very fast secondary reaction step (k2 ≫ k1) following the oxidation of the hydrazid and with H2O2 participating. Diazochinone is assumed to be a primary oxidation product.


1973 ◽  
Vol 51 (19) ◽  
pp. 3182-3186 ◽  
Author(s):  
Eberhard Kiehlmann ◽  
Fred Masaro ◽  
Frederick J. Slawson

The acetate-catalyzed epimerization of 1,1,1-trichloro-2-hydroxy-3-methyl-4-hexanone has been studied in glacial acetic acid as solvent at five different temperatures. The reaction follows pseudo first-order, reversible kinetics and is associated with an activation energy of 24.0 ± 0.4 kcal/mol. Rate and product studies have shown that epimerization occurs by an enolization–ketonization pathway rather than dehydration–rehydration or retroaldol–aldolization. The ratio of diastereomeric ketols formed by condensation of 2-pentanone and 2-heptanone with chloral does not change as a function of time while the stereochemistry of the chloral addition to cyclohexanone is kinetically controlled during the initial reaction period.


1992 ◽  
Vol 70 (10) ◽  
pp. 2515-2519 ◽  
Author(s):  
Sharifa S. Alkaabi ◽  
Ahmad S. Shawali

The kinetics of the reactions of a series of (Z)-4-arylidene-2-phenyl-5(4H)oxazolones 1 with n-butylamine and piperidine were studied spectrophotometrically in dioxane, ethanol, and cyclohexane under pseudo-first-order conditions and at different temperatures. The relation k1(obs) = k2[amine] + k3[amine]2 was found applicable for all reactions studied in either dioxane or ethanol. However, in cyclohexane the n-butylaminolysis of 1 followed only third-order kinetics k1(obs) = k3[n-BuNH2]2. The kinetics of the reaction of 1 with n-butylamine in the presence of catalytic amounts of triethylamine in dioxane followed the equation: k1(obs)k2 = [n-BuNH2] + k3[n-BuNH2]2[Formula: see text] [Et3N]. The rate constants k2 and k3 correlated well with the Hammett equation and the corresponding activation parameters were determined. The results were interpreted in terms of a mechanism involving solvent- and amine-catalyzed processes.


Sign in / Sign up

Export Citation Format

Share Document