Kinetische Untersuchung der Chemilumineszenz von 7-Dimethyl-amino-naphthalin-1.2-dicarbonsäurehydrazid in wäßrig alkalischem Wasserstoffperoxid in Gegenwart von Hämin / Kinetic Investigation of the Chemoluminescence of 7-Dimethyl-amino-naphthalin-1,2-dicarbonic-acid-hydrazid in aqueous alcaline H2O2 in Presence of Hemin

1970 ◽  
Vol 25 (5) ◽  
pp. 484-491 ◽  
Author(s):  
Hans-Friedrich Eicke ◽  
Helmut Fiege ◽  
Karl-Dietrich Gundermann

The chemoluminescence-system: DNH/NaOHaq/H2O2/hemin was investigated with the help of a “stopped-flow-technique”. By use of an optical cut-off-filter the chemoluminescence- (514 nm), and the absorptionband (325 nm) resp. could be separated which proved impossible with luminol. In this way we could follow the temporal change of chemoluminescence and of absorption of DNH: the latter dropped coutinually with progress of the reaction while the chemoluminescence-intensity passed through a maximum before it decreased according to the same rate law (pseudo first order conditions as for DNH) which governs the absorption change of DNH. The oxidation of DNH is rate-determining and of first order as to DNH, H2O2 and (possibly) NaOH (k1 = 1,5·10-3 s-1-1 M-2). The kinetic interpretation of the chemoluminescence-maxima confirmed this result. The light production occurred in a very fast secondary reaction step (k2 ≫ k1) following the oxidation of the hydrazid and with H2O2 participating. Diazochinone is assumed to be a primary oxidation product.

RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56068-56073 ◽  
Author(s):  
Karuppiah Nagaraj ◽  
Subramanian Sakthinathan ◽  
Sankaralingam Arunachalam

The kinetics of reductions of surfactant cobalt(iii) complexes by iron(ii) in liposome vesicles (DPPC) and amphiphilic salt ((BMIM)Br) were studied at different temperatures by UV-Vis absorption spectroscopy method under pseudo first order conditions using an excess of the reductant.


2019 ◽  
Vol 44 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Enisa Selimović ◽  
Tanja Soldatović

Substitution reactions of square-pyramidal [ZnCl2(terpy)] complex (terpy = 2,2′:6′,2″-terpyridine) with biologically relevant nucleophiles such as imidazole, glutathione, 1,2,4-triazole, and pyrazine were investigated at pH 7.0 as a function of nucleophile concentration. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions comprised two steps of consecutive displacement of chlorido ligands. Different reaction pathways for the first reaction step of nucleophilic substitution were defined. The order of reactivity of the investigated nucleophiles for the first reaction was imidazole > glutathione > pyrazine > 1,2,4-triazole, while for the second reaction step it was pyrazine > 1,2,4-triazole > imidazole > glutathione.


1975 ◽  
Vol 151 (1) ◽  
pp. 51-59 ◽  
Author(s):  
S R Parr ◽  
M T Wilson ◽  
C Greenwood

The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 × 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 × 10(4)M-1-s-1 and 1.6 × 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.


2011 ◽  
Vol 11 (21) ◽  
pp. 10837-10851 ◽  
Author(s):  
R. K. Talukdar ◽  
L. Zhu ◽  
K. J. Feierabend ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of CH3COCHO (methylglyoxal) with the OH and NO3 radicals and (CHO)2 (glyoxal) with the NO3 radical are reported. Rate coefficients for the OH + CH3COCHO (k1) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k1 was found to be independent of the bath gas pressure with k1(295 K) = (1.29 ± 0.13) × 10−11 cm3 molecule−1 s−1 and a temperature dependence that is well represented by the Arrhenius expression k1(T) = (1.74 ± 0.20) × 10−12 exp[(590 ± 40)/T] cm3 molecule−1 s−1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO3 + (CHO)2 (k3) and NO3 + CH3COCHO (k4) reactions were measured using a relative rate technique to be k3(296 K) = (4.0 ± 1.0) × 10−16 cm3 molecule−1 s−1 and k4(296 K) = (5.1 ± 2.1) × 10−16 cm3 molecule−1 s−1. k3(T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10−16 and (7.9 ± 3.6) × 10−16 cm3 molecule−1 s−1, respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO3 reaction rate coefficients measured in this work are discussed.


1989 ◽  
Vol 259 (3) ◽  
pp. 929-930 ◽  
Author(s):  
M Bruch ◽  
J G Bieth

We have used the proflavin displacement method and a stopped-flow apparatus to measure the rate constant for the binding of 2 microM-chymotrypsin to 20-125 microM-alpha 1-proteinase inhibitor. The observed pseudo-first-order constant showed a hyperbolic dependence on alpha 1-proteinase inhibitor concentration, suggesting a reaction mechanism in which a fast pre-equilibrium (K = 0.19 mM) is followed by a first-order formation of the final complex (k = 252 s-1).


1992 ◽  
Vol 70 (10) ◽  
pp. 2515-2519 ◽  
Author(s):  
Sharifa S. Alkaabi ◽  
Ahmad S. Shawali

The kinetics of the reactions of a series of (Z)-4-arylidene-2-phenyl-5(4H)oxazolones 1 with n-butylamine and piperidine were studied spectrophotometrically in dioxane, ethanol, and cyclohexane under pseudo-first-order conditions and at different temperatures. The relation k1(obs) = k2[amine] + k3[amine]2 was found applicable for all reactions studied in either dioxane or ethanol. However, in cyclohexane the n-butylaminolysis of 1 followed only third-order kinetics k1(obs) = k3[n-BuNH2]2. The kinetics of the reaction of 1 with n-butylamine in the presence of catalytic amounts of triethylamine in dioxane followed the equation: k1(obs)k2 = [n-BuNH2] + k3[n-BuNH2]2[Formula: see text] [Et3N]. The rate constants k2 and k3 correlated well with the Hammett equation and the corresponding activation parameters were determined. The results were interpreted in terms of a mechanism involving solvent- and amine-catalyzed processes.


2008 ◽  
Vol 112 (33) ◽  
pp. 7608-7615 ◽  
Author(s):  
Víctor Hugo Uc ◽  
J. Raúl Alvarez-Idaboy ◽  
Annia Galano ◽  
Annik Vivier-Bunge

Sign in / Sign up

Export Citation Format

Share Document