The effects of protonated heterocyclic cations on the structural and magnetic properties of tetrachlorocuprate(ii) anions; X-ray, magnetochemical and EPR studies

2018 ◽  
Vol 42 (19) ◽  
pp. 15705-15713 ◽  
Author(s):  
Ülo Kersen ◽  
Andrzej Wojtczak ◽  
Alina Bienko ◽  
Julia Jezierska

The crystal and molecular structures and magnetic properties of two new complexes (HMepy)2[CuCl4]·2H2O, 2, and (H2Me2ppz)[CuCl4], 3, formed by tetrachlorocuprate(ii) anions and organic heterocyclic cations, have been determined by the analysis of their X-ray diffraction data, magnetic susceptibility behaviour and EPR spectral parameters.

1996 ◽  
Vol 453 ◽  
Author(s):  
H.-C. Zur Loye ◽  
P. Núñez ◽  
M. A. Rzeznik

AbstractThe one-dimensional compounds Sr3MgPtO6, Sr3MgIrO6, Sr3MgRhO6, Sr3GdRhO6, have been synthesized and structurally characterized by Rietveld refinement of powder X-ray diffraction data. All four compounds are isostructural with the rhombohedral K4CdCl6-type structure. The structure consists of infinite one-dimensional chains of alternating face-shared MO6 octahedra (M = Pt, Ir, Rh) and M′O6 (M′ = Gd, Mg) trigonal prisms. The strontium cations are located in a distorted square antiprismatic environment. Magnetic susceptibility data show that both Sr3MgIrO6 and Sr3MgRhO6 obey the Curie-Weiss law with θ = −6(1) K, and θ= −15(3)K, respectively. Sr3GdRhO6 obeys the Curie law with μeff = 7.80 B.M, consistent with an oxidation state of +3 for both rhodium and gadolinium.


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


2015 ◽  
Vol 44 (31) ◽  
pp. 14130-14138 ◽  
Author(s):  
Gwilherm Nénert ◽  
Oscar Fabelo ◽  
Kerstin Forsberg ◽  
Claire V. Colin ◽  
Juan Rodríguez-Carvajal

We have reinvestigated the crystal structure of the low-dimensional fluoride β-FeF3(H2O)2·H2O using high resolution neutron and X-ray diffraction data.


2004 ◽  
Vol 848 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Erin E. Erickson ◽  
Monica Moldovan ◽  
David P. Young ◽  
Julia Y. Chan

AbstractA new member of the LnMIn5 family, ErCoIn5, has been synthesized by a flux-growth method. The structure of ErCoIn5 was determined by single crystal X-ray diffraction. It crystallizes in the tetragonal space group P4/mmm, Z = 1, with lattice parameters a = 4.5400(4) and c = 7.3970(7) Å, and V = 152.46(2) Å3. Electrical resistivity data show metallic behavior. Magnetic susceptibility measurements show this compound to be antiferromagnetic with TN = 5.1 K. We compare these experimental results with those of LaCoIn5 in an effort to better understand the effect of the structural trends observed on the transport and magnetic properties.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


1990 ◽  
Vol 45 (10) ◽  
pp. 1369-1382 ◽  
Author(s):  
Heindirk tom Dieck ◽  
Lutz Stamp

Diazadienes RN = CR′-CR′ = NR (DAD) form molecular complexes with copper(I) halides of composition (DAD)CuX, the structures of which vary from [(DAD)2Cu]+(CuCl2)⁻ with a non-tetrahedral bis(chelated) cation, over [(DAD)CuCl]2 with asymmetrically bridging chloro ligands to planar three-coordinate (DAD)CuCl. The composition of the isolated complexes depends on the relative concentrations or on the solvent. The “soft” coordination geometry of copper is underlined by the structure of the coordination polymer of composition (DAD)2Cu5Cl5, in which Cu atoms of coordination number 2, 3 and 4 and very irregular geometries are encountered and where the DAD ligands are exclusively bridging. Halide ions and sp2-nitrogen donors are very competitive. Bridging DAD ligands are also encountered in (DAD)Cu-Y with the less nucleophilic anions trifluoromethane-sulphonate or perchlorate. Crystal and molecular structures are established for all these coordination geometries and the causes are discussed for the coordination flexibility of copper(I)


1986 ◽  
Vol 41 (5) ◽  
pp. 581-586 ◽  
Author(s):  
Konrad Holl ◽  
Ulf Thewalt

Among the reaction products of S4N4 with SnCl4 in chloroform, that contains acetic acid and small amounts of water, there are two salts S4N4H+[SnCl5(H2O)]- (A) and (S3N2NH2+)2[SnCl6]2- (B), both containing protonated SnNm units. The crystal and molecular structures of A and B have been determined by X-ray diffraction. A: monoclinic, P21/c, a = 9.084(2), b - 23.758(4), c = 6.587(1) Å , β = 101.86(3)°, Dc = 2.383 g·cm-3 and Z = 4. B: monoclinic, P21/n, a = 9.882(3), b = 12.873(4), c = 6.807(2) Å , β = 93.77(5)°, Dc = 2.352 g·cm-3 and Z = 2. The structures of the cations in both compounds agree well with those found of other salts containing these cations.


2018 ◽  
Vol 197 ◽  
pp. 02007
Author(s):  
Erfan Handoko ◽  
Anggoro B S ◽  
Iwan Sugihartono ◽  
Mangasi AM ◽  
Dini Siti Nurwulan ◽  
...  

In In this study to understand the substitutional effect of Co-Zn on structural and magnetic properties of the BaFe12-2xCoxZnxO19 M-type hexagonal ferrites with concentration (x= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by the ceramic method. The results of x-ray diffraction show polycrystalline with single phase. Scanning electron microscopy micrographs shows the hexagonal ferrites that are composed of small particles with large porosity, roughly of spherical shapes. The substitution of Fe3+ ion by Co2+ and Zn2+ has changed magnetic properties of hexagonal ferrites.


Sign in / Sign up

Export Citation Format

Share Document