Metallic oxide-modified sulfated zirconia: an environment-friendly solid acid catalyst

2019 ◽  
Vol 43 (8) ◽  
pp. 3625-3632
Author(s):  
Naiwang Liu ◽  
Xin Wang ◽  
Li Shi ◽  
Xuan Meng

Metallic oxides were introduced into the synthesis of sulfated zirconia. Catalytic activity was tested by an olefin removal reaction.

2011 ◽  
Vol 76 (12) ◽  
pp. 1791-1797 ◽  
Author(s):  
Wei-Lin Li ◽  
Jin-Ying Liang ◽  
Tian-Bao Wang ◽  
Ya-Qin Yang

FeCl3–SiO2 is environment-friendly heterogeneous catalyst for the condensation of kojic acid and aldehydes with dimedone to afford dihydropyrano[3,2-b]chromenediones. The solid acid catalyst is stable and can be easily recovered and reused without appreciable change in its efficiency.


2019 ◽  
Vol 7 (1) ◽  
pp. 55-80 ◽  
Author(s):  
Fatemeh Ghorbani ◽  
Seied Ali Pourmousavi ◽  
Hamzeh Kiyani

Background: Much attention has been focused on heterogeneous catalysts. Reactions with these recoverable and reusable catalysts are clean, selective with high efficiency. Among the heterogeneous solid acid catalyst in organic synthesis, Carbon-Based Solid Acids (CBSAs), which are important solid acid with many practical and research applications have been extensively studied. In this work, green Pistachio peel, a biomass waste, was converted into a novel carbon-based solid acid catalyst (Pis-SO3H). Objective: The aim of this work is to synthesize highly sulfonated carbon as an efficient, recyclable, nontoxic solid acid catalyst by simultaneous sulfonation, dehydration and carbonization of green Pistachio peel as biomass and investigate the catalytic activity of Pis-SO3H in acetalization, thioacetalization, acylation of aldehydes and synthesis of 3,3'-Arylmethylene-bis(4-hydroxycoumarin) derivatives. Method: Pis-SO3H was synthesized by an integrated fast one-step hydrothermal carbonization and sulfonation process in the presence of sulfuric acid. The characterization of the physicochemical properties of Pis-SO3H was achieved by XRD, FT-IR, FE-SEM, and elemental analysis. Results: The result of acid-base titration showed that the total acidity of the catalyst was 7.75 mmol H+g−1. This new heterogeneous catalyst has been efficiently used for the chemoselective thioacetalization, acetalization and acylation of aldehyde and the synthesis of biscoumarins under solvent-free conditions. All the reactions work easily in high yields. The antimicrobial activity of some of the biscoumarins was evaluated in screening by disk diffusion assay for the zone of inhibition. Conclusion: The catalytic activity of the Pis-SO3H was investigated during acetalization, thioacetalization, acylation and synthesis of biscoumarins. The results of protection of carbonyl groups and synthesis of biscoumarins in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste.


2013 ◽  
Vol 67 (5) ◽  
Author(s):  
Mohammad Abdollahi-Alibeik ◽  
Mohammad Hajihakimi

AbstractThe condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO42−-ZrO2) as the solid acid catalyst. Nanosized SO42−-ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.


2011 ◽  
Vol 383-390 ◽  
pp. 1144-1149 ◽  
Author(s):  
Yue Ling Gu ◽  
Guo Hui Xu ◽  
Zuo Gang Guo ◽  
Shu Rong Wang

Solid acid catalyst has high catalytic esterification activity but with a free acid excess problem. In this paper, washing pretreatments were adopted in the catalyst preparation processes and their influences on catalytic activity and residual free acid amount were investigated. Residual free acid amount can be reduced by 33% with both washing before calcinations and washing after calcinations pretreatments. But their influences on catalyst activities were different. Washing before calcinations pretreatment reduced the catalytic activity from 80.29% to 57.72% while the other washing pretreatment had little influence on the catalyst activity. In order to describe the influence mechanism of washing pretreatments, catalysts were characterized by FT-IR and XRD. Finally, typical compounds in bio-oil were selected to form a bio-oil model compounds system. The catalyst pretreated by washing after calcinations was used on the esterification research of this bio-oil model system. The volume ratio of propanol to bio-oil model compound was 3:1. The reaction temperature was 90 °C and the amount of catalyst was 2wt% of total liquid mass. Combined with the GC-MS qualitative and quantitative results, carboxylic acids, such as formic acid, acetic acid, propionic acid were converted to esters effectively.


2015 ◽  
Vol 41 (9) ◽  
pp. 12186-12191 ◽  
Author(s):  
Qiang Zhao ◽  
Shuangming Meng ◽  
Junli Wang ◽  
Yongsheng Qiao ◽  
Zuopeng Li ◽  
...  

2010 ◽  
Vol 96 ◽  
pp. 183-187 ◽  
Author(s):  
Pan Wang ◽  
Si Hui Zhan ◽  
Hong Bing Yu

Using solid acid catalyst for the levulinic acid (LA) production from cellulose is one of the promising methods for utilization of biomass. An environmentally friendly solid acid catalyst, sulfated TiO2 was prepared by precipitation-impregnation method and used to catalyze the production of levulinic acid from cellulose. The concentration of sulphuric acid had a remarkable influence on the construction and catalytic activity of sulfated TiO2. The influence of reaction temperature and catalyst dosage on levulinic acid yield was also investigated with the aim to obtain the highest yield of LA. The optimum condition for the highest yield of levulinic acid (27.2%) was achieved at 240 °C, 0.7g of sulfated TiO2 and reaction time of 15 min. The recycling test indicated that the catalytic activity of the catalyst had a slight decrease after being used two times.


Sign in / Sign up

Export Citation Format

Share Document