Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles

2013 ◽  
Vol 67 (5) ◽  
Author(s):  
Mohammad Abdollahi-Alibeik ◽  
Mohammad Hajihakimi

AbstractThe condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO42−-ZrO2) as the solid acid catalyst. Nanosized SO42−-ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.

2014 ◽  
Vol 881-883 ◽  
pp. 297-301 ◽  
Author(s):  
Yan Zhi Liu ◽  
Shun Ping Wang ◽  
Kun Yuan ◽  
Huian Tang

The solid acid catalyst (ACSA) for the gutter oil esterification to biodiesel was prepared via active carbon as raw material by introducing the-SO3H group onto the surface of it. The ACSA were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and elemental analysis (EA), respectively. And the results showed that the-SO3H groups were successfully introduced onto the surface of the active carbon and the containing of the-SO3H groups are higher than 0.017g per gram of ACSA.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Seyed Yousef Mosavian

Zirconia was synthesized in nanosize by sol-gel method and perchlorated zirconia (HClO4/ZrO2) with various calcination temperatures were prepared and characterized by XRD, FTIR and SEM techniques. The catalyst acidity characters, including the acidicstrength and the total number of acid sites were determined by potentiometric titration. The catalytic performance experiments show that the HClO4/ZrO2 with calcination temperature of 300 °C has the best catalytic activity. 2,3-Dihydroquinazolin-4(1H)-ones wereprepared in good to excellent yields via condensation reaction of oaminobenzamide and various types of aldehydes and ketones in the presence of HClO4/ZrO2 nanoparticles as an efficient solid acid catalyst. The catalyst is reusable with moderate loss in activity.


Fuel ◽  
2016 ◽  
Vol 165 ◽  
pp. 298-305 ◽  
Author(s):  
K. Saravanan ◽  
Beena Tyagi ◽  
Ram S. Shukla ◽  
Hari C. Bajaj

2020 ◽  
Author(s):  
Iryanti F. Nata ◽  
Chairul Irawan ◽  
Meilana D. Putra ◽  
Cheng-Kang Lee

Abstract The sulfonated carbon solid acid catalyst (C-SO3H) was successfully generated from palm empty fruit bunch (PEFB) carbon via hydrothermal sulfonation by addition of hydroxyethylsulfonic acid and citric acid. The C-SO3H was identified contain of 1.75 mmol/g of acidity and 40.2% of sulphur. The surface morphology of C-SO3H showed pores with diameters of 3-6 µm and crystalline index (CrI) of material was decreased to 63.8% due to changed structure become carbon. The surface area of carbon was increased significantly from 11.5 to 239.65 m2 g- 1 after hydrothermal treatment. The identification of functional groups of -SO3H, COOH and -OH were detected by Fourier Transform Infra-Red (FT-IR). The optimum catalytic activity of C-SO3H was achieved via hydrolysis reaction with 60.4% of total reducing sugar (TRS) yield. The both concentrations of C-SO3H and cassava peel starch are 5% (w v- 1) at 100 oC for 1 h. Stability of C-SO3H showed good performance for 4th repeated used; it showed insignificant of activity that decreased only of 6%. Thus, the C-SO3H is a candidate for green and potential sulfonated solid acid catalyst for wide range applications.


2020 ◽  
Author(s):  
Iryanti F. Nata ◽  
Chairul Irawan ◽  
Meilana D. Putra ◽  
Cheng-Kang Lee

Abstract The sulfonated carbon solid acid catalyst (C-SO3H) was successfully generated from palm empty fruit bunch (PEFB) carbon via hydrothermal sulfonation by addition of hydroxyethylsulfonic acid and citric acid. The C-SO3H was identified contain of 1.75 mmol/g of acidity and 40.2% of sulphur. The surface morphology of C-SO3H showed pores with diameters of 3-6 µm and crystalline index (CrI) of material was decreased to 63.8% due to changed structure become carbon. The surface area of carbon was increased significantly from 11.5 to 239.65 m2g-1 after hydrothermal treatment. The identification of functional groups of -SO3H, COOH and -OH were detected by Fourier Transform Infra-Red (FT-IR). The optimum catalytic activity of C-SO3H was achieved via hydrolysis reaction with 60.4% of total reducing sugar (TRS) yield. The both concentrations of C-SO3H and cassava peel starch is 5% at 100 oC for 1 h. Stability of C-SO3H showed good performance for 4th repeated used; it showed insignificant of activity that decreased only of 6%. Thus, the C-SO3H is a candidate for green and potential sulfonated solid acid catalyst for wide range applications.


2020 ◽  
Vol 32 (9) ◽  
pp. 2153-2157
Author(s):  
VIJAYA CHARAN GUGULOTH ◽  
SATYANARAYANA BATTU

A simple method is delineated for the synthesis of substituted ester products in superior yields by esterification reaction under solvent unbound condition using tungsten upgraded ZrO2 solid acid catalyst at 353 K. The WO3/ZrO2 catalyst has been prepared by using impregnation method followed by calcination at 923 K over a period of 6 h in air atmosphere. SEM, XRD, FTIR, and BET surface area techniques were used to categorize this catalyst. Zirconia has both acidic and basic possessions which can be changed by incorporating suitable promoter atom like tungsten which in turn increases the surface area thereby enhancing the surface acidity. Impregnation of W6+ ions exhibits a strong influence on phase modification of zirconia from thermodynamically solid monoclinic to metastable tetragonal phase. Amalgamation of promoter W6+ will stabilize tetragonal phase which is active in catalyzing reactions. In esterification reaction WO3/ZrO2 catalyst was found to be stable, efficient and environmental friendly, effortlessly recovered by filtration, excellent yield of product and can be reusable efficiently.


2015 ◽  
Vol 39 (12) ◽  
pp. 9665-9671 ◽  
Author(s):  
Ali Alinasab Amiri ◽  
Shahrzad Javanshir ◽  
Zahra Dolatkhah ◽  
Mohammad G. Dekamin

SO3H-functionalized mesoporous silica materials were used to synthesize 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives in a one-pot three-component condensation reaction.


Sign in / Sign up

Export Citation Format

Share Document