Iron-oxide-based twin nanoplates with strong T2 relaxation shortening for contrast-enhanced magnetic resonance imaging

Nanoscale ◽  
2018 ◽  
Vol 10 (38) ◽  
pp. 18398-18406 ◽  
Author(s):  
Ruixue Wei ◽  
Tiantian Zhou ◽  
Chengjie Sun ◽  
Hongyu Lin ◽  
Lijiao Yang ◽  
...  

Iron oxide twin nanoplates with high T2 relaxivity for in vivo contrast-enhanced magnetic resonance imaging and tumor imaging were reported.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Yan ◽  
Wei Yang ◽  
Xiang Li ◽  
Hongmei Liu ◽  
Xiang Nan ◽  
...  

The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein-) targeted microparticles of iron oxide (CD81-MPIO) for magnetic resonance imaging (MRI) of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G-) MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS) and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P<0.01). Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.


2021 ◽  
Vol 9 (7) ◽  
pp. 1781-1786
Author(s):  
Ze’ai Wang ◽  
Yanfeng Wang ◽  
Yuan Wang ◽  
Chaogang Wei ◽  
Yibin Deng ◽  
...  

Biomineralized iron oxide–polydopamine hybrid nanodots are constructed using albumin nanoreactors to facilitate contrast-enhanced T1-weighted magnetic resonance imaging as well as photothermal therapeutic efficacy.


Author(s):  
L. A. R. Righesso ◽  
M. Terekhov ◽  
H. Götz ◽  
M. Ackermann ◽  
T. Emrich ◽  
...  

Abstract Objectives Micro-computed tomography (μ-CT) and histology, the current gold standard methods for assessing the formation of new bone and blood vessels, are invasive and/or destructive. With that in mind, a more conservative tool, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), was tested for its accuracy and reproducibility in monitoring neovascularization during bone regeneration. Additionally, the suitability of blood perfusion as a surrogate of the efficacy of osteoplastic materials was evaluated. Materials and methods Sixteen rabbits were used and equally divided into four groups, according to the time of euthanasia (2, 3, 4, and 6 weeks after surgery). The animals were submitted to two 8-mm craniotomies that were filled with blood or autogenous bone. Neovascularization was assessed in vivo through DCE-MRI, and bone regeneration, ex vivo, through μ-CT and histology. Results The defects could be consistently identified, and their blood perfusion measured through DCE-MRI, there being statistically significant differences within the blood clot group between 3 and 6 weeks (p = 0.029), and between the former and autogenous bone at six weeks (p = 0.017). Nonetheless, no significant correlations between DCE-MRI findings on neovascularization and μ-CT (r =−0.101, 95% CI [−0.445; 0.268]) or histology (r = 0.305, 95% CI [−0.133; 0.644]) findings on bone regeneration were observed. Conclusions These results support the hypothesis that DCE-MRI can be used to monitor neovascularization but contradict the premise that it could predict bone regeneration as well.


2008 ◽  
Vol 20 (9) ◽  
pp. 1671-1678 ◽  
Author(s):  
Xiangyang Shi ◽  
Su He Wang ◽  
Scott D. Swanson ◽  
Song Ge ◽  
Zhengyi Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document