scholarly journals Carbon aerogels with improved flexibility by sphere templating

RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27326-27331 ◽  
Author(s):  
Miralem Salihovic ◽  
Nicola Hüsing ◽  
Johannes Bernardi ◽  
Volker Presser ◽  
Michael S. Elsaesser

Using soft templating, mechanically reversible compressible resorcinol–formaldehyde aerogels can be converted into mechanically reversible compressible carbon aerogels with high surface area by carbonization in an inert atmosphere.

2004 ◽  
Vol 350 ◽  
pp. 136-144 ◽  
Author(s):  
Sandrine Berthon-Fabry ◽  
David Langohr ◽  
Patrick Achard ◽  
Daniel Charrier ◽  
David Djurado ◽  
...  

Carbon ◽  
2011 ◽  
Vol 49 (14) ◽  
pp. 4848-4857 ◽  
Author(s):  
Daisuke Tashima ◽  
Eri Yamamoto ◽  
Nanami Kai ◽  
Daisuke Fujikawa ◽  
Go Sakai ◽  
...  

2013 ◽  
Vol 37 (1) ◽  
pp. 245-249 ◽  
Author(s):  
Fernando Hung-Low ◽  
Geneva R. Peterson ◽  
Marauo Davis ◽  
Louisa J. Hope-Weeks

2005 ◽  
Vol 11 (5) ◽  
pp. 1658-1664 ◽  
Author(s):  
Wen-Cui Li ◽  
An-Hui Lu ◽  
Wolfgang Schmidt ◽  
Ferdi Schüth

1998 ◽  
Vol 225 ◽  
pp. 81-85 ◽  
Author(s):  
R Saliger ◽  
U Fischer ◽  
C Herta ◽  
J Fricke

2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750010 ◽  
Author(s):  
Bowei Chen ◽  
Xiaojun Wang ◽  
Jiayi Zhu ◽  
Yutie Bi ◽  
Xuan Luo ◽  
...  

In this work, novel monolithic carbon aerogels obtained by using a polymer template method were characterized and evaluated for their applications in the hydrogen and deuterium adsorption capacity. The properties (i.e., surface area, pore size distribution, hydrogen and deuterium adsorption capacities, etc.) of the carbon aerogels were affected by the polymer templates. The results showed that the carbon aerogel with the molar ratio of polyacrylic acid (PAA) to zinc chloride (ZnCl2) being 0.75:40 was featured the highest surface area (1806 m2/g) and had the highest hydrogen adsorption capacity. Moreover, the deuterium adsorption capacity of the carbon aerogel was to be further elucidated.


2016 ◽  
Vol 852 ◽  
pp. 1349-1355
Author(s):  
Jia Yi Zhu ◽  
Xi Yang ◽  
Zhi Bing Fu ◽  
Chao Yang Wang ◽  
Wei Dong Wu ◽  
...  

The ultra-low density carbon aerogel, as low as 20 mg/cm3, was fabricated by pyrolysis of the organic aerogel formed by aqueous condensation of resorcinol and formaldehyde. Its surface area was as high as 1783 m2/g and it was used for investigation of electrochemical capacitive behaviours. The ultra-low density carbon aerogel displayed capacitive performance (110 F/g at 0.2 A/g) in 6 M KOH aqueous solution. Additionally, over 98% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The electrochemical performance might be attributed to the combination of three dimensional “opened” structure and high surface area of the carbon aerogel.


1995 ◽  
Vol 393 ◽  
Author(s):  
R.W. Pekala ◽  
C.T. Alviso ◽  
J.K. Nielsen ◽  
T.D. Tran ◽  
G.A.M. Reynolds ◽  
...  

ABSTRACTThe ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the aerogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1100 m2/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.


Sign in / Sign up

Export Citation Format

Share Document