scholarly journals A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance

RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 30777-30782 ◽  
Author(s):  
Cunlei Zou ◽  
Zongning Chen ◽  
Enyu Guo ◽  
Huijun Kang ◽  
Guohua Fan ◽  
...  

A nano Cu5Zr and micro ZrB2 dual-scale particulate-reinforced copper matrix composite is prepared by in situ synthesis and heat treatment, which has high strength, high electrical conductivity and superior wear resistance.

2007 ◽  
Vol 534-536 ◽  
pp. 929-932 ◽  
Author(s):  
Tungwai Leo Ngai ◽  
Zhi Yu Xiao ◽  
Yuan Biao Wu ◽  
Yuan Yuan Li

Conventional powder metallurgy processing can produce copper green compacts with density less than 8.3 g/cm3 (a relative density of 93%). Performances of these conventionally compacted materials are substantially lower than their full density counterparts. Warm compaction, which is a simple and economical forming process to prepare high density powder metallurgy parts or materials, was employed to develop a Ti3SiC2 particulate reinforced copper matrix composite with high density, high electrical conductivity and high strength. In order to clarify the warm compaction behaviors of copper powder and to optimize the warm compaction parameters, effects of lubricant concentration and compaction pressure on the green density of the copper compacts were studied. Copper compact with a green density of 8.57 g/cm3 can be obtained by compacting Cu powder with a pressure of 700 MPa at 145°C. After sintered at 1000°C under cracked ammonia atmosphere for 60 minutes, density of the sintered compact reached 8.83 g/cm3 (a relative density of 98.6%). Based on these fabrication parameters a Ti3SiC2 particulate reinforced copper matrix composite was prepared. Its density, electrical conductivity, ultimate tensile strength, elongation percentage and tribological behaviors were studied.


2011 ◽  
Vol 311-313 ◽  
pp. 26-31
Author(s):  
Ai Hui Liu ◽  
Hong Yan Ding ◽  
Guang Hong Zhou ◽  
Yue Zhang

Combined SHS with casting, in-situ Al2O3particle-reinforced copper matrix composite was fabricated. The effects of the load and Al2O3particle on the friction coefficient and wear volume were investigated. And the wear resistance of composite was compared with that of pure copper. The results show that with the increase of load, the coefficient of the copper increases, while it decreases slightly as to composite. The wear volume of the composite is always lower than that of copper. The highest relative wear ability is 4.5, which indicates a better wear resistance..


2006 ◽  
Vol 532-533 ◽  
pp. 596-599 ◽  
Author(s):  
Tungwai Leo Ngai ◽  
Yuan Yuan Li ◽  
Zhao Yao Zhou

Increasing density is the best way to increase the performance of powder metallurgy materials. Conventional powder metallurgy processing can produce copper green compacts with density less than 8.3g/cm3 (a relative density of 93%). Performances of these conventionally compacted materials are substantially lower than their full density counterparts. Warm compaction, which is a simple and economical forming process to prepare high density powder metallurgy parts or materials, was employed to develop a Ti3SiC2 particulate reinforced copper matrix composite with high strength, high electrical conductivity and good tribological behaviors. Ti3SiC2 particulate reinforced copper matrix composites, with 1.25, 2.5 and 5 mass% Ti3SiC2 were prepared by compacting powder with a pressure of 700 MPa at 145°C, then sintered at 1000°C under cracked ammonia atmosphere for 60 minutes. Their density, electrical conductivity and ultimate tensile strength decrease with the increase in particulate concentration, while hardness increases with the increase in particulate concentration. A small addition of Ti3SiC2 particulate can increase the hardness of the composite without losing much of electrical conductivity. The composite containing 1.25 mass% Ti3SiC2 has an ultimate tensile strength of 158 MPa, a hardness of HB 58, and an electrical resistivity of 3.91 x 10-8 Ω.m.


2013 ◽  
Vol 668 ◽  
pp. 804-807
Author(s):  
Lan Li ◽  
Lin Sheng Li ◽  
Chang Jun Qiu

In order to meet the need of high-strength and high-electrical conductivity copper alloys in industry. A method of making high-strength and high-electrical conductivity copper alloys is discussed in this paper. This method uses the technology of heated mold continuous casting to make Cu-Cr alloy. Because it utilizes the high electrical conductivity of copper matrix and high strength of the chromium phase, the in-situ composite Cu-Cr alloy with directional solidification structure is got. The in-situ composite Cu-Cr alloy has good properties and will be widely used in industry.


2010 ◽  
Vol 17 (01) ◽  
pp. 93-97 ◽  
Author(s):  
HOON CHO ◽  
BYOUNG-SOO LEE ◽  
HYUNG-HO JO

The effect of thermal heat treatment on the mechanical and electrical properties of Cu–Ag alloys was investigated. The homogenization heat treatment leads to an increase in tensile strength and a decrease in electrical conductivity due to dissolution of Ag into copper matrix. Also, it is shown that electrical conductivity of as-cast Cu–Ag alloys decreases with increasing Ag content. In contrast, the aging heat treatment gives rise to increase both the tensile strength and electrical conductivity because the Ag solute diffuses out from copper matrix during aging heat treatment. Therefore, it can be mentioned that the electrical conductivity of Cu–Ag alloys depends on Ag solute in copper matrix. Also, aging treatment is favorable to acquire high strength and high electrical conductivity.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 679
Author(s):  
Jinfeng Zou ◽  
Jianyi Cheng ◽  
Guangbo Feng ◽  
Jian Xie ◽  
Fangxin Yu

To obtain high strength and high electrical conductivity at the same time, the microstructure and properties of 0.2 wt.% V-added, 0.1 wt.% V-added and V-free Cu-1.6Ni-1.2Co-0.65Si(-V) alloys were investigated. We examined with electrical conductivity and hardness measurements, tensile test, optical microscope and transmission electron microscope (TEM). The results show that Cu-1.6Ni-1.2Co-0.65Si-0.1V alloy obtains excellent combination properties: electrical conductivity is 46.12% IACS, hardness is 293.88 Hv, and tensile strength is 782 MPa, which are produced by 65% cold rolling + aging at 500 °C for 480 min. The addition of vanadium (V) can accelerate the precipitation of solute atoms from the copper matrix, improve the hardness and electrical conductivity of Cu-1.6Ni-1.2Co-0.65Si alloys, and greatly accelerated the aging response. δ-(Co,Ni)2Si and β-Ni3Si phases are detected in Cu-1.6Ni-1.2Co-0.65Si-0.1V alloy. The Orowan mechanism and grain boundary strengthening play a major role in the yield strength strengthening due to δ-(Co,Ni)2Si phase.


Sign in / Sign up

Export Citation Format

Share Document