scholarly journals Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application

RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 39918-39928 ◽  
Author(s):  
Yanping Chen ◽  
Shaoyi Lyu ◽  
Shenjie Han ◽  
Zhilin Chen ◽  
Wenjun Wang ◽  
...  

The electrochemical performances of nanocellulose-based electrode materials were improved via building nano-carbon conducting networks.

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Ai-Lan Yan ◽  
Xin-Chang Wang ◽  
Ji-Peng Cheng

The research on supercapacitors has been attractive due to their large power density, fast charge/discharge speed and long lifespan. The electrode materials for supercapacitors are thus intensively investigated to improve the electrochemical performances. Various transition metal layered double hydroxides (LDHs) with a hydrotalcite-like structure have been developed to be promising electrode materials. Earth-abundant metal hydroxides are very suitable electrode materials due to the low cost and high specific capacity. This is a review paper on NiMn LDHs for supercapacitor application. We focus particularly on the recent published papers using NiMn LDHs as electrode materials for supercapacitors. The preparation methods for NiMn LDHs are introduced first. Then, the structural design and chemical modification of NiMn LDH materials, as well as the composites and films derived from NiMn LDHs are discussed. These approaches are proven to be effective to enhance the performance of supercapacitor. Finally, the reports related to NiMn LDH-based asymmetric supercapacitors are summarized. A brief discussion of the future development of NiMn LDHs is also provided.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 726 ◽  
Author(s):  
Hoseong Han ◽  
Sunghun Cho

Silica-conducting polymer (SiO2-CP) has the advantages of high electrical conductivity, structural stability, and the facile formation of thin-film. This work deals with the preparation and optimization of polypyrrole (PPy)-encapsulated silica nanoparticles (SiO2 NPs) using an ex situ method. The SiO2-PPy core-shell NPs prepared by the ex situ method are well dispersed in water and facilitate the mass production of thin-film electrodes with improved electrical and electrochemical performances using a simple solution process. As-prepared SiO2-PPy core-shell NPs with different particle sizes were applied to electrode materials for two-electrode supercapacitors based on coin cell batteries. It was confirmed that the areal capacitance (73.1 mF/cm2), volumetric capacitance (243.5 F/cm3), and cycling stability (88.9% after 5000 cycles) of the coin cell employing the ex situ core-shell was superior to that of the conventional core-shell (4.2 mF/cm2, 14.2 mF/cm3, and 82.2%). Considering these facts, the ex situ method provides a facile way to produce highly-conductive thin-film electrodes with enhanced electrical and electrochemical properties for the coin cell supercapacitor application.


2019 ◽  
Vol 55 (78) ◽  
pp. 11719-11722 ◽  
Author(s):  
Jacob Olchowka ◽  
Long H. B. Nguyen ◽  
Thibault Broux ◽  
Paula Sanz Camacho ◽  
Emmanuel Petit ◽  
...  

Investigation of the effects of Al substitution for V on the structural properties and electrochemical performances for two of the most promising positive electrode materials for Na-ion batteries, Na3V2(PO4)2F3 and Na3V2(PO4)2FO2.


2015 ◽  
Vol 44 (5) ◽  
pp. 2409-2415 ◽  
Author(s):  
Siwen Zhang ◽  
Bosi Yin ◽  
He Jiang ◽  
Fengyu Qu ◽  
Ahmad Umar ◽  
...  

Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 664
Author(s):  
Shuai Tan ◽  
Theodore John Kraus ◽  
Mitchell Ross Helling ◽  
Rudolph Kurtzer Mignon ◽  
Franco Basile ◽  
...  

Coal-derived carbon nanofibers (CCNFs) have been recently found to be a promising and low-cost electrode material for high-performance supercapacitors. However, the knowledge gap still exists between holistic understanding of coal precursors derived from different solvents and resulting CCNFs’ properties, prohibiting further optimization of their electrochemical performance. In this paper, assisted by laser desorption/ionization (LDI) and gas chromatography–mass spectrometry (GC–MS) technologies, a systematic study was performed to holistically characterize mass distribution and chemical composition of coal precursors derived from various ionic liquids (ILs) as extractants. Sequentially, X-ray photoelectron spectroscopy (XPS) revealed that the differences in chemical properties of various coal products significantly affected the surface oxygen concentrations and certain species distributions on the CCNFs, which, in turn, determined the electrochemical performances of CCNFs as electrode materials. We report that the CCNF that was produced by an oxygen-rich coal fragment from C6mimCl ionic liquid extraction showed the highest concentrations of quinone and ester groups on the surface. Consequentially, C6mimCl-CCNF achieved the highest specific capacitance and lowest ion diffusion resistance. Finally, a symmetric carbon/carbon supercapacitor fabricated with such CCNF as electrode delivered an energy density of 21.1 Wh/kg at the power density of 0.6 kW/kg, which is comparable to commercial active carbon supercapacitors.


Author(s):  
Wen-Wei Song ◽  
Bing Wang ◽  
Xiao-Man Cao ◽  
Qiang Chen ◽  
Zhengbo Han

Metal-organic frameworks (MOFs)-derived transition-metal oxides and transition-metal phosphides have great application potential as electrode materials for supercapacitors, owing to the excellent redox activity and high conductivity. However, their electrochemical performances...


RSC Advances ◽  
2017 ◽  
Vol 7 (64) ◽  
pp. 40286-40294 ◽  
Author(s):  
Xiaoyu Zhao ◽  
Yongdan Hou ◽  
Yanfei Wang ◽  
Libin Yang ◽  
Liang Zhu ◽  
...  

The aim of this study was to prepare manganese dioxide with different crystal forms through hydrothermal treatment of MnSO4·H2O–KMnO4 precursors at various precursor ratios, temperatures, time periods, and pH values.


2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Author(s):  
Zhen Kong ◽  
Meiling Huang ◽  
Zhenyan Liang ◽  
Huayao Tu ◽  
Kang Zhang ◽  
...  

The reasonable design of electrode materials with heterojunction and vacancy is a promising strategy to elevate its electrochemical performances. Herein, tin-based sulfide composites with heterojunction and sulfur vacancy encapsulated by...


Sign in / Sign up

Export Citation Format

Share Document