Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application

2015 ◽  
Vol 44 (5) ◽  
pp. 2409-2415 ◽  
Author(s):  
Siwen Zhang ◽  
Bosi Yin ◽  
He Jiang ◽  
Fengyu Qu ◽  
Ahmad Umar ◽  
...  

Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively.

2009 ◽  
Vol 24 (5) ◽  
pp. 998-1002
Author(s):  
Bo LIU ◽  
Fa-Zhan WANG ◽  
Gu-Zhong ZHANG ◽  
Chao ZHAO ◽  
Si-Cong YUAN

2011 ◽  
Vol 406 (18) ◽  
pp. 3479-3483 ◽  
Author(s):  
C.Y. Zang ◽  
C.H. Zang ◽  
B. Wang ◽  
Z.X. Jia ◽  
S.R. Yue ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Sarita Boolchandani ◽  
Subodh Srivastava ◽  
Y. K. Vijay

The indium selenium (InSe) bilayer thin films of various thickness ratios, InxSe(1-x) (x = 0.25, 0.50, 0.75), were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe) and aluminum selenide (AlSe) bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.


2017 ◽  
Vol 45 ◽  
pp. 193-198 ◽  
Author(s):  
Ankur Soam ◽  
Rajiv Dusane

As the physical and electrical properties of silicon nanowires (SiNWs) are determined by their dimension, it is necessary to control their dimension to integrate them in a device. SiNWs were synthesized via Vapor-Liquid-Solid (VLS) mechanism in hot-wire chemical vapor process (HWCVP) technique using silane as a Si source and Sn as a catalyst. Different sizes of nano-template have been made by depositing of different amount of Sn using thermal evaporation method. The size of nano-template is found to be increased with the quantity of Sn. The diameter of resulted SiNWs depends on the size of the nano-template and it increases with the nano-template size. However, the diameter of SiNWs is found to be much larger than the used nano-template which is due to the deposition of silicon film on the sidewalls of the growing SiNWs. It is demonstrated here that the diameter of the interior core of SiNWs can be controlled desirable by adjusting the size of the nano-template.


2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Sign in / Sign up

Export Citation Format

Share Document