scholarly journals A convenient separation method for di(2-ethylhexyl)phthalate by novel superparamagnetic molecularly imprinted polymers

RSC Advances ◽  
2018 ◽  
Vol 8 (63) ◽  
pp. 36191-36199 ◽  
Author(s):  
Xinhua Yuan ◽  
Tiantian Liu ◽  
Lei Gao ◽  
Lu Xing ◽  
Yingying Zhu ◽  
...  

Through surface molecular imprinting technique and coating superparamagnetic Fe3O4 nanoparticles with molecularly imprinted polymers, a novel MMIP was successfully fabricated for the convenient separation of DEHP.

2017 ◽  
Vol 9 (47) ◽  
pp. 6682-6688 ◽  
Author(s):  
Jing Wang ◽  
Yaxin Sang ◽  
Weihua Liu ◽  
Na Liang ◽  
Xianghong Wang

In this study, a direct competitive biomimetic enzyme-linked immunosorbent assay (BELISA) method using molecularly imprinted polymers (MIPs) as artificial antibodies was developed to detect enrofloxacin (ENRO) in animal-based food.


2014 ◽  
Vol 6 (9) ◽  
pp. 3079-3085 ◽  
Author(s):  
Dong Ren ◽  
Jiang He ◽  
Haixia Zhang

A novel strategy was developed to prepare hollow molecularly imprinted polymers (HMIPs) with thin solid shells, in which a soft polystyrene core and a hard inner shell of SiO2 were introduced; this strategy combined surface molecular imprinting of Sudan I and in situ polymerization.


2016 ◽  
Vol 4 (44) ◽  
pp. 7138-7145 ◽  
Author(s):  
Hirobumi Sunayama ◽  
Takeo Ohta ◽  
Atsushi Kuwahara ◽  
Toshifumi Takeuchi

An antibiotic-imprinted cavity with two different fluorescent dyes was prepared by molecular imprinting and subsequent post-imprinting modifications (PIMs), for the readout of a specific binding event as a fluorescence signal.


1998 ◽  
Vol 27 (9) ◽  
pp. 925-926 ◽  
Author(s):  
Masahiro Yoshida ◽  
Kazuya Uezu ◽  
Masahiro Goto ◽  
Shintaro Furusaki ◽  
Makoto Takagi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziqi Xie ◽  
Yunjing Luo ◽  
Zhen Na ◽  
Wei Zhang ◽  
Yufei Zong

AbstractIn this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed utilizing a surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that the diameter of the Gen-MMIPs was approximately 500 nm. Via analysis with a vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs was determined to be 24.79 emu g−1. Fourier transform infrared (FT-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiments suggested that the genistein adsorption capability of Gen-MMIPs was 5.81 mg g−1, and adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction (dSPE) adsorbents combined with HPLC were used to selectively separate genistein in soy sauce samples, and the recoveries ranged from 85.7 to 88.5% with relative standard deviations (RSDs) less than 5%, which proved that this method can be used for the detection of genistein residues in real samples.


2021 ◽  
Author(s):  
Ziqi Xie ◽  
Yunjing Luo ◽  
Zhen Na ◽  
Wei Zhang ◽  
Yunfei Zong

Abstract In this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed by surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs were characterized by using of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated the diameters of Gen-MMIPs were about 500 nm. Through the technique of vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs were detected as 24.79 emu/g. Fourier transform infrared (FR-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiment suggested the adsorption capability of Gen-MMIPs to genistein were 1.55 mg/g, and 2 the adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction adsorbent combined with HPLC was used to selectively separate genistein in soy sauce samples, the recoveries were ranged from 85.7% to 88.5% with the relative standard deviations (RSD) less than 5%, which proved this method can be used for the detection of genistein residues in real samples.


2020 ◽  
Vol 105 (5) ◽  
pp. 806-812
Author(s):  
Lorena Díaz de León-Martínez ◽  
Jessica Meléndez-Marmolejo ◽  
Karla Vargas-Berrones ◽  
Rogelio Flores-Ramírez

Sign in / Sign up

Export Citation Format

Share Document