Synthesis, characterization and evaluation of hollow molecularly imprinted polymers for Sudan I

2014 ◽  
Vol 6 (9) ◽  
pp. 3079-3085 ◽  
Author(s):  
Dong Ren ◽  
Jiang He ◽  
Haixia Zhang

A novel strategy was developed to prepare hollow molecularly imprinted polymers (HMIPs) with thin solid shells, in which a soft polystyrene core and a hard inner shell of SiO2 were introduced; this strategy combined surface molecular imprinting of Sudan I and in situ polymerization.

RSC Advances ◽  
2018 ◽  
Vol 8 (63) ◽  
pp. 36191-36199 ◽  
Author(s):  
Xinhua Yuan ◽  
Tiantian Liu ◽  
Lei Gao ◽  
Lu Xing ◽  
Yingying Zhu ◽  
...  

Through surface molecular imprinting technique and coating superparamagnetic Fe3O4 nanoparticles with molecularly imprinted polymers, a novel MMIP was successfully fabricated for the convenient separation of DEHP.


2016 ◽  
Vol 4 (44) ◽  
pp. 7138-7145 ◽  
Author(s):  
Hirobumi Sunayama ◽  
Takeo Ohta ◽  
Atsushi Kuwahara ◽  
Toshifumi Takeuchi

An antibiotic-imprinted cavity with two different fluorescent dyes was prepared by molecular imprinting and subsequent post-imprinting modifications (PIMs), for the readout of a specific binding event as a fluorescence signal.


2017 ◽  
Vol 9 (46) ◽  
pp. 6525-6533 ◽  
Author(s):  
Qi Qu ◽  
Tao Zhu

Hybrid-monomer double-template molecularly imprinted polymers (HDMIPs) were prepared by two different approaches based on in situ polymerization.


2016 ◽  
Vol 168 ◽  
pp. 550-552
Author(s):  
J. Rossignol ◽  
E. Bou-Maroun ◽  
P. Cayot ◽  
D. Stuerga ◽  
C. Lafarge ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 196-207 ◽  
Author(s):  
Yeşeren Saylan ◽  
Adil Denizli

Introduction: A molecular imprinting is one of the fascinating modification methods that employ molecules as targets to create geometric cavities for recognition of targets in the polymeric matrix. This method provides a broad versatility to imprint target molecules with different size, three-dimensional structure and physicochemical features. In contrast to the complex and timeconsuming laboratory surface modification procedures, this method offers a rapid, sensitive, inexpensive, easy-to-use, and selective approach for the diagnosis, screening and monitoring disorders. Owing to their unique features such as high selectivity, physical and chemical robustness, high stability, low-cost and reusability of this method, molecularly imprinted polymers have become very attractive materials and been applied in various applications from separation to detection. Background: The aims of this review are structured according to the fundamentals of molecularly imprinted polymers involving essential elements, preparation procedures and also the analytical applications platforms. Finally, the future perspectives to increase the development of molecularly imprinted platforms. Methods: A molecular imprinting is one of the commonly used modification methods that apply target as a recognition element itself and provide a wide range of versatility to replica other targets with a different structure, size, and physicochemical features. A rapid, easy, cheap and specific recognition approach has become one of the investigation areas on, especially biochemistry, biomedicine and biotechnology. In recent years, several technologies of molecular imprinting method have gained prompt development according to continuous use and improvement of traditional polymerization techniques. Results: The molecularly imprinted polymers with excellent performances have been prepared and also more exciting and universal applications have been recognized. In contrast to the conventional methods, the imprinted systems have superior advantages including high stability, relative ease and low cost of preparation, resistance to elevated temperature, and pressure and potential application to various target molecules. In view of these considerations, molecularly imprinted systems have found application in various fields of analytical chemistry including separation, purification, detection and spectrophotometric systems. Conclusion: Recent analytical methods are reported to develop the binding kinetics of imprinted systems by using the development of other technologies. The combined platforms are among the most encouraging systems to detect and recognize several molecules. The diversity of molecular imprinting methods was overviewed for different analytical application platforms. There is still a requirement of more knowledge on the molecular features of these polymers. A next step would further be the optimization of different systems with more homogeneous and easily reachable recognition sites to reduce the laborious in the accessibility in the three-dimensional polymeric materials in sufficient recognition features and also better selectivity and sensitivity for a wide range of molecules.


2017 ◽  
Vol 9 (47) ◽  
pp. 6682-6688 ◽  
Author(s):  
Jing Wang ◽  
Yaxin Sang ◽  
Weihua Liu ◽  
Na Liang ◽  
Xianghong Wang

In this study, a direct competitive biomimetic enzyme-linked immunosorbent assay (BELISA) method using molecularly imprinted polymers (MIPs) as artificial antibodies was developed to detect enrofloxacin (ENRO) in animal-based food.


Sign in / Sign up

Export Citation Format

Share Document