scholarly journals Synthesis and characterization of genistein magnetic molecularly imprinted polymers and their application in soy sauce products

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziqi Xie ◽  
Yunjing Luo ◽  
Zhen Na ◽  
Wei Zhang ◽  
Yufei Zong

AbstractIn this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed utilizing a surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that the diameter of the Gen-MMIPs was approximately 500 nm. Via analysis with a vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs was determined to be 24.79 emu g−1. Fourier transform infrared (FT-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiments suggested that the genistein adsorption capability of Gen-MMIPs was 5.81 mg g−1, and adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction (dSPE) adsorbents combined with HPLC were used to selectively separate genistein in soy sauce samples, and the recoveries ranged from 85.7 to 88.5% with relative standard deviations (RSDs) less than 5%, which proved that this method can be used for the detection of genistein residues in real samples.

2021 ◽  
Author(s):  
Ziqi Xie ◽  
Yunjing Luo ◽  
Zhen Na ◽  
Wei Zhang ◽  
Yunfei Zong

Abstract In this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed by surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs were characterized by using of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated the diameters of Gen-MMIPs were about 500 nm. Through the technique of vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs were detected as 24.79 emu/g. Fourier transform infrared (FR-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiment suggested the adsorption capability of Gen-MMIPs to genistein were 1.55 mg/g, and 2 the adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction adsorbent combined with HPLC was used to selectively separate genistein in soy sauce samples, the recoveries were ranged from 85.7% to 88.5% with the relative standard deviations (RSD) less than 5%, which proved this method can be used for the detection of genistein residues in real samples.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiaoxiao Wang ◽  
Yanqiang Zhou ◽  
Yuling Niu ◽  
Shanwen Zhao ◽  
Bolin Gong

This study presents a new strategy for the detection of enrofloxacin (ENR) in food samples by the use of monodisperse ENR molecularly imprinted polymers (MIPs). Using enrofloxacin as template molecule, methacrylic acid as functional monomer, and ethylene diglycidyl ether as cross-linker, surface molecularly imprinted polymers (MIPs) were prepared on the surface of polymeric glycidyl methacrylate-ethylene glycol dimethacrylate (PGMA-EDMA) microspheres. The surface morphology and imprinting behavior of PGMA-EDMA@MIPs were investigated and optimized. Synthesized PGMA-EDMA@MIPs showed good physical and chemical stability and specific recognition toward fluoroquinolones. The introduction of PGMA-EDMA microspheres greatly increased the adsorption area of PGMA-EDMA@MIPs and increased the adsorption capacity of target molecules. The core shell structure increased the adsorption rate, and adsorption equilibrium was achieved within 6 min, much higher than that of MIPs synthesized by traditional methods. Enrofloxacin in milk samples was detected by molecular imprinting solid phase extraction (MISPE) combined with high performance liquid chromatography (HPLC). Implementing this method resulted in a recovery rate of 94.6~109.6% with a relative standard deviation (RSD) of less than 3.2%. The limit of detection (LOD) of this method was identified as three times the signal-to-noise ratio (10 μg/L). In summary, this work proposed a sensitive, rapid, and convenient method for the determination of trace ENR in food samples.


2017 ◽  
Vol 9 (17) ◽  
pp. 2585-2589 ◽  
Author(s):  
Jieping Luo ◽  
Ning Chen ◽  
Zaiyue Yang ◽  
Jiyong Han ◽  
Wanying Zhu ◽  
...  

A reliable pretreatment method of magnetic molecularly imprinted polymers/dispersive solid-phase extraction was developed for selectivity and enrichment of targets.


2018 ◽  
Vol 42 (19) ◽  
pp. 16144-16153 ◽  
Author(s):  
Arash Asfaram ◽  
Maryam Arabi ◽  
Abbas Ostovan ◽  
Hossein Sadeghi ◽  
Mehrorang Ghaedi

In the present study, a D-μ-SPE clean-up method was established for the analysis of quercetin in extracts of plants and food samples using a magnetic molecularly imprinted polymer as the sorbent by HPLC-UV detection.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Al-Abbasi & et al.

Betamethasone sodium phosphate (BMSP)  selective molecularly imprinted polymers(MIPs) were based on ion-pair by prepared four polymers(MIPs) using BMSP as the template a well as (Acryl amide) (AAM), 2-Acrylamido-2-Methyl-1-Propane sulphonic Acid (2-AAMMPSA as monomer, used N,N-ethylenebismethacrylamide (EBMAA) ,ethylene glycol dimethacrylate ethylene glycol(EGDMAC), N, N-methylene bisacrylamide (NNMBAAM)) as cross linker and used benzoyl peroxide as initiator . NIPs prepared by using the same composition of MIPs except the template (BMSP). The MIPs were prepared using variation  ratio of monomer and cross linker .These MIPs applicate as solid phase extraction for determination    BMSP in pharmaceutical preparation used UV as detector .the results gave good response, where the reconstruction percentage (Rec%) value of BMSP drug took the range (99.058149 % - 101.887004 %), and the relative standard deviation (RSD%) value took the range (0.224149 % - 0.743651 %) for standard solution and Rec% took values of (98.400035 - 99.404218) %, and RSD% took values of (0.572589 - 1.012777) % of BMSP drug for the Betamethasone sodium phosphate pharmaceutical.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Shanwen Zhao ◽  
Chanling Wei ◽  
Zhian Sun ◽  
Huachun Liu ◽  
Yanqiang Zhou ◽  
...  

Chloramphenicol- (CAP-) restricted access media-molecularly imprinted polymers (CAP-RAM-MIPs) were prepared by precipitation polymerization using CAP as a template molecule, 2-diethylaminoethyl methacrylate (DEAEM) as a functional monomer, ethylene glycol dimethyl acrylate (EDMA) as a crosslinking agent, glycidyl methacrylate (GMA) as an outer hydrophilic functional monomer, and acetonitrile as a pore former and solvent. The CAP-RAM-MIPs were successfully characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The adsorption performance was investigated in detail using static, dynamic, and selective adsorption experiments. Adsorption equilibrium could be reached within 11 min. The CAP-RAM-MIPs had a high adsorption rate and good specific adsorption properties. Scatchard fitting curves indicated there were two binding sites for CAP-RAM-MIPs. Adsorption was Freundlich multilayer adsorption and consistent with the quasi-second kinetic model. Using CAP-RAM-MIPs for selective separation and enrichment CAP in bovine serum in combination with high-performance liquid chromatography (HPLC), CAP recovery ranged from 94.1 to 97.9% with relative standard deviations of 0.7–1.5%. This material has broad application prospects in enrichment and separation.


Sign in / Sign up

Export Citation Format

Share Document