scholarly journals Synthesis of ZnO doped high valence S element and study of photogenerated charges properties

RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4422-4427 ◽  
Author(s):  
Lijing Zhang ◽  
Xiufang Zhu ◽  
Zhihui Wang ◽  
Shan Yun ◽  
Tan Guo ◽  
...  

The uniform distribution of S dopants elevated the valence band maximum by mixing S 3p with the upper valence band states of ZnO. The valence band maxima of S–ZnO was 0.37 eV higher than that of ZnO.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun-Chang Liu ◽  
Chen-Min Dai ◽  
Yimeng Min ◽  
Yi Hou ◽  
Andrew H. Proppe ◽  
...  

AbstractIn lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C.


1996 ◽  
Vol 53 (24) ◽  
pp. R16152-R16155 ◽  
Author(s):  
Th. Straub ◽  
K. Fauth ◽  
Th. Finteis ◽  
M. Hengsberger ◽  
R. Claessen ◽  
...  

1988 ◽  
Vol 3 (1) ◽  
pp. 164-166
Author(s):  
Richard P. Beres ◽  
Roland E. Allen ◽  
John D. Dow

The energy levels of antisite defects at a GaAs/Ge (110) interface are calculated and shown to be essentially unaltered with respect to the GaAs valence band maximum by different choices of the valence band offset.


1990 ◽  
Vol 04 (18) ◽  
pp. 1133-1136
Author(s):  
S.B. ZHANG

Recent theory predicted that the Ga and B antisites in GaAs are bistable. As the Fermi level is lowered towards the valence-band maximum, a structural change from fourfold to threefold coordination will occur. The Ga antisite will undergo an atomic exchange in the presence of an As interstitial.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Bo Yin ◽  
Chaogang Lou

The doping behavior of Cd atoms in the CuInSe2thin films and their influences on electronic structures are investigated. The doped Cd atoms replace Cu atoms and prefer to stay at the (112) surface of the thin films. They combine with Cu vacancies to form defect pairs due to low formation energy. The Cd atom does not by itself modify significantly the electronic structure of the surface, but the defect pairs have important influences. They result in a down shift of valence band maximum and form a hole barrier at the surface, which can prevent holes from reaching the surface and reduce the recombination of carriers.


Sign in / Sign up

Export Citation Format

Share Document