scholarly journals Large-scale comparison of machine learning methods for drug target prediction on ChEMBL

2018 ◽  
Vol 9 (24) ◽  
pp. 5441-5451 ◽  
Author(s):  
Andreas Mayr ◽  
Günter Klambauer ◽  
Thomas Unterthiner ◽  
Marvin Steijaert ◽  
Jörg K. Wegner ◽  
...  

The to date largest comparative study of nine state-of-the-art drug target prediction methods finds that deep learning outperforms all other competitors. The results are based on a benchmark of 1300 assays and half a million compounds.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Noé Sturm ◽  
Andreas Mayr ◽  
Thanh Le Van ◽  
Vladimir Chupakhin ◽  
Hugo Ceulemans ◽  
...  

2020 ◽  
Vol 36 (16) ◽  
pp. 4490-4497
Author(s):  
Siqi Liang ◽  
Haiyuan Yu

Abstract Motivation In silico drug target prediction provides valuable information for drug repurposing, understanding of side effects as well as expansion of the druggable genome. In particular, discovery of actionable drug targets is critical to developing targeted therapies for diseases. Results Here, we develop a robust method for drug target prediction by leveraging a class imbalance-tolerant machine learning framework with a novel training scheme. We incorporate novel features, including drug–gene phenotype similarity and gene expression profile similarity that capture information orthogonal to other features. We show that our classifier achieves robust performance and is able to predict gene targets for new drugs as well as drugs that potentially target unexplored genes. By providing newly predicted drug–target associations, we uncover novel opportunities of drug repurposing that may benefit cancer treatment through action on either known drug targets or currently undrugged genes. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 11 (7) ◽  
pp. 3239
Author(s):  
Shicheng Cheng ◽  
Liang Zhang ◽  
Bo Jin ◽  
Qiang Zhang ◽  
Xinjiang Lu ◽  
...  

The prediction of drug–target interactions is always a key task in the field of drug redirection. However, traditional methods of predicting drug–target interactions are either mediocre or rely heavily on data stacking. In this work, we proposed our model named GraphMS. We merged heterogeneous graph information and obtained effective node information and substructure information based on mutual information in graph embeddings. We then learned high quality representations for downstream tasks, and proposed an end–to–end auto–encoder model to complete the task of link prediction. Experimental results show that our method outperforms several state–of–the–art models. The model can achieve the area under the receiver operating characteristics (AUROC) curve of 0.959 and area under the precise recall curve (AUPR) of 0.847. We found that the mutual information between the substructure and graph–level representations contributes most to the mutual information index in a relatively sparse network. And the mutual information between the node–level and graph–level representations contributes most in a relatively dense network.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 292 ◽  
Author(s):  
Md Zahangir Alom ◽  
Tarek M. Taha ◽  
Chris Yakopcic ◽  
Stefan Westberg ◽  
Paheding Sidike ◽  
...  

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.


2019 ◽  
Author(s):  
Siqi Liang ◽  
Haiyuan Yu

AbstractIn silicodrug target prediction provides valuable information for drug repurposing, understanding of side effects as well as expansion of the druggable genome. In particular, discovery of actionable drug targets is critical to developing targeted therapies for diseases. Here, we develop a robust method for drug target prediction by leveraging a class imbalance-tolerant machine learning framework with a novel training scheme. We incorporate novel features, including drug-gene phenotype similarity and gene expression profile similarity, that capture information orthogonal to other features. We show that our classifier achieves robust performance and is able to predict gene targets for new drugs as well as drugs that target unexplored genes. By providing newly predicted drug-target associations, we uncover novel opportunities of drug repurposing that may benefit cancer treatment through action on either known drug targets or currently undrugged genes.


Sign in / Sign up

Export Citation Format

Share Document