scholarly journals Red-emissive azabenzanthrone derivatives for photodynamic therapy irradiated with ultralow light power density and two-photon imaging

2018 ◽  
Vol 9 (23) ◽  
pp. 5165-5171 ◽  
Author(s):  
Qiguang Zang ◽  
Jiayi Yu ◽  
Wenbin Yu ◽  
Jun Qian ◽  
Rongrong Hu ◽  
...  

Azabenzanthrone derivatives with high phototoxicity and efficient emission are designed for photodynamic therapy and deep-tissue imaging.

2017 ◽  
Vol 5 (20) ◽  
pp. 3651-3657 ◽  
Author(s):  
Shaojing Zhao ◽  
Guangle Niu ◽  
Feng Wu ◽  
Li Yan ◽  
Hongyan Zhang ◽  
...  

Polythiophene nanoparticles with large TPA cross section and high1O2generation quantum yield have been developed for simultaneous lysosome-targetable fluorescence imaging and photodynamic therapy.


2013 ◽  
Vol 4 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Cristina Cepraga ◽  
Thibault Gallavardin ◽  
Sophie Marotte ◽  
Pierre-Henri Lanoë ◽  
Jean-Christophe Mulatier ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 2705-2710 ◽  
Author(s):  
Wei Qin ◽  
Pengfei Zhang ◽  
Hui Li ◽  
Jacky W. Y. Lam ◽  
Yuanjing Cai ◽  
...  

A successful strategy for the design of ultrabright red luminogens with aggregation-induced emission (AIE) features is reported. The AIE dots can be utilized as efficient fluorescent probes for in vivo deep-tissue imaging with high penetration depth and high contrast.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yanyan Fan ◽  
Helin Liu ◽  
Rongcheng Han ◽  
Lu Huang ◽  
Hao Shi ◽  
...  

2021 ◽  
Author(s):  
Xuzi Cai ◽  
Kangnan Wang ◽  
Wen Ma ◽  
yuanyuan Yang ◽  
Gui Chen ◽  
...  

Abstract Developing novel photosensitizers for deep tissue imaging and efficient photodynamic therapy (PDT) remains a challengebecause of the poor water solubility, low reactive oxygen species (ROS) generation efficiency, serve dark cytotoxicity, and weak absorption in the NIR region of conventional photosensitizers. Herein,cyclometalated iridium (III) complexes(Ir)with aggregation-induced emission (AIE) feature, high photoinduced ROS generation efficiency, two-photonexcitation, and mitochondria-targetingcapability were designed and further encapsulated into biocompatible nanoparticles (NPs).The Ir-NPs can be used to disturb redox homeostasis in vitro, result in mitochondrial dysfunction and cell apoptosis. Importantly, invivo experiments demonstrated that theIr-NPs presented obviously tumor-targeting ability, excellent antitumor effect, and low systematic dark-toxicity. Moreover, the Ir-NPs could serve as a two-photon imaging agent for deep tissue bioimaging with a penetration depth of up to 300 μm. This work presents a promising strategy for designing a clinical application of multifunctional Ir-NPs toward bioimaging and PDT.


Sign in / Sign up

Export Citation Format

Share Document