scholarly journals Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria

2018 ◽  
Vol 9 (21) ◽  
pp. 4898-4908 ◽  
Author(s):  
Fabian Panter ◽  
Daniel Krug ◽  
Sascha Baumann ◽  
Rolf Müller

Mining the genome to harvest from the metabolome: a well-directed search for bioactive natural products unearths the pyxidicyclines fromPyxidicoccus.

2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s bioproduction of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam, ribosomal engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A bioproduction titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A bioproduction was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increasing of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A bioproduction titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.7 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2020 ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Backgrounds: Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC- cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities.Results: To well activate the expression of cam , ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development.Conclusions: Our results have constructed an ideal CRM A producer. More importantly, our efforts also have demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 199 ◽  
Author(s):  
Luisa Albarano ◽  
Roberta Esposito ◽  
Nadia Ruocco ◽  
Maria Costantini

Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.


2019 ◽  
Author(s):  
Bahar Behsaz ◽  
Hosein Mohimani ◽  
Alexey Gurevich ◽  
Andrey Prjibelski ◽  
Mark F. Fisher ◽  
...  

ABSTRACTCyclic and branch cyclic peptides (cyclopeptides) represent an important class of bioactive natural products that include many antibiotics and anti-tumor compounds. However, little is known about cyclopeptides in the human gut, despite the fact that humans are constantly exposed to them. To address this bottleneck, we developed the CycloNovo algorithm for de novo cyclopeptide sequencing that employs de Bruijn graphs, the workhorse of DNA sequencing algorithms. CycloNovo reconstructed many new cyclopeptides that we validated with transcriptome, metagenome, and genome mining analyses. Our benchmarking revealed a vast hidden cyclopeptidome in the human gut and other environments and suggested that CycloNovo offers a much-needed step-change for cyclopeptide discovery. Furthermore, CycloNovo revealed a wealth of anti-microbial cyclopeptides from food that survive the complete human gastrointestinal tract, raising the question of how these cyclopeptides might affect the human microbiome.SIGNIFICANCEThe golden age of antibiotics was followed by a decline in the pace of antibiotics discovery in the 1990s. The key prerequisite for the resurgence of antibiotics research is the development of a computational discovery pipeline for antibiotics sequencing. We describe such pipeline for cyclic and branch cyclic peptides (cyclopeptides) that represent an important class of bioactive natural products such as antibiotics and anti-tumor compounds. Our CycloNovo algorithm for cyclopeptide sequencing reconstructed many new cyclopeptides that we validated with transcriptome, metagenome, and genome mining analyses. CycloNovo revealed a wealth of anti-microbial cyclopeptides from food that survive the complete human gastrointestinal tract, raising the question of how these cyclopeptides might affect the human microbiome.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yunchang Xie ◽  
Jiawen Chen ◽  
Bo Wang ◽  
Tai Chen ◽  
Junyu Chen ◽  
...  

Abstract Background Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities. Results To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development. Conclusions Our results had constructed an ideal CRM A producer. More importantly, our efforts also had demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.


2018 ◽  
Vol 12 (6) ◽  
pp. 318-328 ◽  
Author(s):  
Zhongyue Li ◽  
Deyu Zhu ◽  
Yuemao Shen

Sign in / Sign up

Export Citation Format

Share Document